論文の概要: Robust Visual Tracking via Iterative Gradient Descent and Threshold Selection
- arxiv url: http://arxiv.org/abs/2406.00589v1
- Date: Sun, 2 Jun 2024 01:51:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 04:16:01.329718
- Title: Robust Visual Tracking via Iterative Gradient Descent and Threshold Selection
- Title(参考訳): 反復的グラディエントDescentとThreshold選択によるロバストな視覚追跡
- Authors: Zhuang Qi, Junlin Zhang, Xin Qi,
- Abstract要約: 本稿では, 誤差ベクトルがガウス-ラプラシアン分布に従えば, 良好な性能が得られる新しい線形回帰推定器を提案する。
さらに、IGDTSを生成トラッカーに拡張し、IGDTS距離を適用してサンプルとモデル間のずれを測定する。
いくつかの難解な画像列の実験結果から,提案したトラッカーは既存のトラッカーより優れていた。
- 参考スコア(独自算出の注目度): 4.978166837959101
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual tracking fundamentally involves regressing the state of the target in each frame of a video. Despite significant progress, existing regression-based trackers still tend to experience failures and inaccuracies. To enhance the precision of target estimation, this paper proposes a tracking technique based on robust regression. Firstly, we introduce a novel robust linear regression estimator, which achieves favorable performance when the error vector follows i.i.d Gaussian-Laplacian distribution. Secondly, we design an iterative process to quickly solve the problem of outliers. In fact, the coefficients are obtained by Iterative Gradient Descent and Threshold Selection algorithm (IGDTS). In addition, we expend IGDTS to a generative tracker, and apply IGDTS-distance to measure the deviation between the sample and the model. Finally, we propose an update scheme to capture the appearance changes of the tracked object and ensure that the model is updated correctly. Experimental results on several challenging image sequences show that the proposed tracker outperformance existing trackers.
- Abstract(参考訳): 視覚的トラッキングは、基本的に、ビデオの各フレームにおけるターゲットの状態の後退を伴う。
大幅な進歩にもかかわらず、既存の回帰ベースのトラッカーは依然として失敗や不正確さを経験する傾向がある。
目標推定精度を高めるために,ロバスト回帰に基づく追跡手法を提案する。
まず, 誤差ベクトルがガウス-ラプラシアン分布に従えば, 良好な性能が得られる新しい線形回帰推定器を提案する。
第二に、アウトレイラの問題を迅速に解決するための反復的なプロセスを設計する。
実際、この係数は反復グラディエントDescent and Threshold Selection algorithm (IGDTS) によって得られる。
さらに、IGDTSを生成トラッカーに拡張し、IGDTS距離を適用してサンプルとモデル間のずれを測定する。
最後に、追跡対象の外観変化を捕捉し、モデルが正しく更新されることを保証する更新方式を提案する。
いくつかの難解な画像列の実験結果から,提案したトラッカーは既存のトラッカーより優れていた。
関連論文リスト
- Transforming Model Prediction for Tracking [109.08417327309937]
トランスフォーマーは、誘導バイアスの少ないグローバルな関係を捉え、より強力なターゲットモデルの予測を学ぶことができる。
提案したトラッカーをエンドツーエンドにトレーニングし、複数のトラッカーデータセットに関する総合的な実験を行うことで、その性能を検証する。
我々のトラッカーは3つのベンチマークで新しい技術状態を設定し、挑戦的なLaSOTデータセットで68.5%のAUCを達成した。
論文 参考訳(メタデータ) (2022-03-21T17:59:40Z) - Learning Dynamic Compact Memory Embedding for Deformable Visual Object
Tracking [82.34356879078955]
本稿では,セグメント化に基づく変形可能な視覚追跡手法の識別を強化するために,コンパクトなメモリ埋め込みを提案する。
DAVIS 2017ベンチマークでは,D3SやSiamMaskなどのセグメンテーションベースのトラッカーよりも優れている。
論文 参考訳(メタデータ) (2021-11-23T03:07:12Z) - Target Transformed Regression for Accurate Tracking [30.516462193231888]
本稿では,TREG(Target Transformed Regression)と呼ばれるTransformerライクな回帰分岐を,正確なアンカーフリートラッキングのために再利用する。
TREGのコアは、ターゲットテンプレートと検索領域の要素間のペアワイズ関係をモデル化し、正確なバウンディングボックス回帰のために得られたターゲット強化ビジュアル表現を使用することです。
さらに,信頼性の高いテンプレートを選択するための簡単なオンラインテンプレート更新機構を考案し,出現変動のロバスト性や対象の時間的変形を増大させる。
論文 参考訳(メタデータ) (2021-04-01T11:25:23Z) - Coarse-to-Fine Object Tracking Using Deep Features and Correlation
Filters [2.3526458707956643]
本稿では,新しいディープラーニング追跡アルゴリズムを提案する。
対象の翻訳を大まかに推定するために,深層特徴の一般化能力を利用する。
そして,相関フィルタの識別力を利用して追跡対象を正確に局所化する。
論文 参考訳(メタデータ) (2020-12-23T16:43:21Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
本稿では,一段検出器の検出パイプラインに対する一連の最適化手法を提案する。
効率的な歩行者検出のための単発アンカーベース検出器(SADet)を形成する。
構造的には単純だが、VGA解像度の画像に対して最先端の結果と20ドルFPSのリアルタイム速度を示す。
論文 参考訳(メタデータ) (2020-07-26T12:32:38Z) - Cascaded Regression Tracking: Towards Online Hard Distractor
Discrimination [202.2562153608092]
本稿では,2段階の逐次回帰トラッカーを提案する。
第1段階では, 容易に同定可能な負の候補を抽出する。
第2段階では、残留するあいまいな硬質試料をダブルチェックするために、離散サンプリングに基づくリッジ回帰を設計する。
論文 参考訳(メタデータ) (2020-06-18T07:48:01Z) - ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking [80.02322563402758]
オンラインマルチオブジェクトトラッキング(MOT)フレームワークの中核的なコンポーネントの1つは、既存のトラックレットと新しい検出を関連付けることである。
そこで我々は,トラックレットが自然運動を表す可能性を直接測定することにより,トラックレットの提案を評価する確率論的自己回帰生成モデルを提案する。
論文 参考訳(メタデータ) (2020-04-16T06:43:11Z) - Probabilistic Regression for Visual Tracking [193.05958682821444]
本稿では,確率論的回帰定式化を提案し,追跡に適用する。
入力画像が与えられたターゲット状態の条件付き確率密度を予測する。
トラッカーは6つのデータセットに新しい最先端のデータをセットし、LaSOTでは59.8%、TrackingNetでは75.8%のAUCを達成した。
論文 参考訳(メタデータ) (2020-03-27T17:58:37Z) - Integration of Regularized l1 Tracking and Instance Segmentation for
Video Object Tracking [1.90365714903665]
本研究では,ディープ・オブジェクト・ディテクターと粒子フィルタ・トラッカーを統合したトラッキング・バイ・検出手法を提案する。
検出器とトラッカーのコンセンサスを確立する新しい観測モデルを定式化する。
変形したオブジェクト境界ボックスを追跡可能な,翻訳,回転,スケーリング,せん断パラメータからなる新しい状態ベクトルを提案する。
論文 参考訳(メタデータ) (2019-12-30T11:14:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。