Phase Recognition in Contrast-Enhanced CT Scans based on Deep Learning
and Random Sampling
- URL: http://arxiv.org/abs/2203.11206v1
- Date: Sun, 20 Mar 2022 18:27:08 GMT
- Title: Phase Recognition in Contrast-Enhanced CT Scans based on Deep Learning
and Random Sampling
- Authors: Binh T. Dao, Thang V. Nguyen, Hieu H. Pham and Ha Q. Nguyen
- Abstract summary: A fully automated system for interpreting abdominal computed tomography (CT) scans with multiple phases of contrast enhancement requires an accurate classification of the phases.
This work aims at developing and validating a precise, fast multi-phase classifier to recognize three main types of contrast phases in abdominal CT scans.
- Score: 0.3670422696827525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A fully automated system for interpreting abdominal computed tomography (CT)
scans with multiple phases of contrast enhancement requires an accurate
classification of the phases. This work aims at developing and validating a
precise, fast multi-phase classifier to recognize three main types of contrast
phases in abdominal CT scans. We propose in this study a novel method that uses
a random sampling mechanism on top of deep CNNs for the phase recognition of
abdominal CT scans of four different phases: non-contrast, arterial, venous,
and others. The CNNs work as a slice-wise phase prediction, while the random
sampling selects input slices for the CNN models. Afterward, majority voting
synthesizes the slice-wise results of the CNNs, to provide the final prediction
at scan level. Our classifier was trained on 271,426 slices from 830
phase-annotated CT scans, and when combined with majority voting on 30% of
slices randomly chosen from each scan, achieved a mean F1-score of 92.09% on
our internal test set of 358 scans. The proposed method was also evaluated on 2
external test sets: CTPAC-CCRCC (N = 242) and LiTS (N = 131), which were
annotated by our experts. Although a drop in performance has been observed, the
model performance remained at a high level of accuracy with a mean F1-score of
76.79% and 86.94% on CTPAC-CCRCC and LiTS datasets, respectively. Our
experimental results also showed that the proposed method significantly
outperformed the state-of-the-art 3D approaches while requiring less
computation time for inference.
Related papers
- An Explainable Non-local Network for COVID-19 Diagnosis [37.378584156643825]
We propose a novel deep residual 3D attention non-local network (NL-RAN) to classify CT images included COVID-19, common pneumonia, and normal.
The network is embedded with a nonlocal module to capture global information, while a 3D attention module is embedded to focus on the details of the lesion.
Our experimental results indicate that our proposed method performs significantly better than existing methods.
arXiv Detail & Related papers (2024-08-08T08:35:21Z) - Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks [0.0]
We propose an automatic algorithm aimed at volumetric segmentation of acute ischemic stroke lesion in non-contrast computed tomography brain 3D images.
Our deep-learning approach is based on the popular 3D U-Net convolutional neural network architecture.
arXiv Detail & Related papers (2023-01-17T10:39:39Z) - A Generic Deep Learning Based Cough Analysis System from Clinically
Validated Samples for Point-of-Need Covid-19 Test and Severity Levels [85.41238731489939]
We seek to evaluate the detection performance of a rapid primary screening tool of Covid-19 based on the cough sound from 8,380 clinically validated samples.
Our proposed generic method is an algorithm based on Empirical Mode Decomposition (EMD) with subsequent classification based on a tensor of audio features.
Two different versions of DeepCough based on the number of tensor dimensions, i.e. DeepCough2D and DeepCough3D, have been investigated.
arXiv Detail & Related papers (2021-11-10T19:39:26Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
We propose a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans.
Our approach is based on cycle-consistent generative adversarial convolutional transformers, for short, CyTran.
Our empirical results show that CyTran outperforms all competing methods.
arXiv Detail & Related papers (2021-10-12T23:25:03Z) - Dopamine Transporter SPECT Image Classification for Neurodegenerative
Parkinsonism via Diffusion Maps and Machine Learning Classifiers [0.0]
This study aims to provide an automatic and robust method to classify the SPECT images into two types, namely Normal and Abnormal DaT-SPECT image groups.
The 3D images of N patients are mapped to an N by N pairwise distance matrix and training set are embedded into a low-dimensional space by using diffusion maps.
The feasibility of the method is demonstrated via Parkinsonism Progression Markers Initiative (PPMI) dataset of 1097 subjects and a clinical cohort from Kaohsiung Chang Gung Memorial Hospital (KCGMH-TW) of 630 patients.
arXiv Detail & Related papers (2021-04-06T06:30:15Z) - A Deep Learning-Based Approach to Extracting Periosteal and Endosteal
Contours of Proximal Femur in Quantitative CT Images [25.76523855274612]
A three-dimensional (3D) end-to-end fully convolutional neural network was developed for our segmentation task.
Two models with the same network structures were trained and they achieved a dice similarity coefficient (DSC) of 97.87% and 96.49% for the periosteal and endosteal contours, respectively.
It demonstrated a strong potential for clinical use, including the hip fracture risk prediction and finite element analysis.
arXiv Detail & Related papers (2021-02-03T10:23:41Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - A Computationally Efficient Multiclass Time-Frequency Common Spatial
Pattern Analysis on EEG Motor Imagery [164.93739293097605]
Common spatial pattern (CSP) is a popular feature extraction method for electroencephalogram (EEG) motor imagery (MI)
This study modifies the conventional CSP algorithm to improve the multi-class MI classification accuracy and ensure the computation process is efficient.
arXiv Detail & Related papers (2020-08-25T18:23:50Z) - Accurate and Efficient Intracranial Hemorrhage Detection and Subtype
Classification in 3D CT Scans with Convolutional and Long Short-Term Memory
Neural Networks [20.4701676109641]
We present our system for the RSNA Intracranial Hemorrhage Detection challenge.
The proposed system is based on a lightweight deep neural network architecture composed of a convolutional neural network (CNN)
We report a weighted mean log loss of 0.04989 on the final test set, which places us in the top 30 ranking (2%) from a total of 1345 participants.
arXiv Detail & Related papers (2020-08-01T17:28:25Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
We propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method.
Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation.
With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data.
arXiv Detail & Related papers (2020-06-25T21:10:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.