Model Comparison in Approximate Bayesian Computation
- URL: http://arxiv.org/abs/2203.11276v1
- Date: Tue, 15 Mar 2022 10:24:16 GMT
- Title: Model Comparison in Approximate Bayesian Computation
- Authors: Jan Boelts
- Abstract summary: A common problem in natural sciences is the comparison of competing models in the light of observed data.
This framework relies on the calculation of likelihood functions which are intractable for most models used in practice.
I propose a new efficient method to perform Bayesian model comparison in ABC.
- Score: 0.456877715768796
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A common problem in natural sciences is the comparison of competing models in
the light of observed data. Bayesian model comparison provides a statistically
sound framework for this comparison based on the evidence each model provides
for the data. However, this framework relies on the calculation of likelihood
functions which are intractable for most models used in practice. Previous
approaches in the field of Approximate Bayesian Computation (ABC) circumvent
the evaluation of the likelihood and estimate the model evidence based on
rejection sampling, but they are typically computationally intense. Here, I
propose a new efficient method to perform Bayesian model comparison in ABC.
Based on recent advances in posterior density estimation, the method
approximates the posterior over models in parametric form. In particular, I
train a mixture-density network to map features of the observed data to the
posterior probability of the models. The performance is assessed with two
examples. On a tractable model comparison problem, the underlying exact
posterior probabilities are predicted accurately. In a use-case scenario from
computational neuroscience -- the comparison between two ion channel models --
the underlying ground-truth model is reliably assigned a high posterior
probability. Overall, the method provides a new efficient way to perform
Bayesian model comparison on complex biophysical models independent of the
model architecture.
Related papers
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.
We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.
Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - A variational neural Bayes framework for inference on intractable posterior distributions [1.0801976288811024]
Posterior distributions of model parameters are efficiently obtained by feeding observed data into a trained neural network.
We show theoretically that our posteriors converge to the true posteriors in Kullback-Leibler divergence.
arXiv Detail & Related papers (2024-04-16T20:40:15Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Towards Model-Agnostic Posterior Approximation for Fast and Accurate Variational Autoencoders [22.77397537980102]
We show that we can compute a deterministic, model-agnostic posterior approximation (MAPA) of the true model's posterior.
We present preliminary results on low-dimensional synthetic data that (1) MAPA captures the trend of the true posterior, and (2) our MAPA-based inference performs better density estimation with less computation than baselines.
arXiv Detail & Related papers (2024-03-13T20:16:21Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Comparing Foundation Models using Data Kernels [13.099029073152257]
We present a methodology for directly comparing the embedding space geometry of foundation models.
Our methodology is grounded in random graph theory and enables valid hypothesis testing of embedding similarity.
We show how our framework can induce a manifold of models equipped with a distance function that correlates strongly with several downstream metrics.
arXiv Detail & Related papers (2023-05-09T02:01:07Z) - Bayesian Neural Network Inference via Implicit Models and the Posterior
Predictive Distribution [0.8122270502556371]
We propose a novel approach to perform approximate Bayesian inference in complex models such as Bayesian neural networks.
The approach is more scalable to large data than Markov Chain Monte Carlo.
We see this being useful in applications such as surrogate and physics-based models.
arXiv Detail & Related papers (2022-09-06T02:43:19Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
We show that we can compute the exact Bayes error of generative models learned using normalizing flows.
We use our approach to conduct a thorough investigation of state-of-the-art classification models.
arXiv Detail & Related papers (2021-06-07T06:21:20Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
arXiv Detail & Related papers (2020-04-22T15:15:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.