Segmenting Medical Instruments in Minimally Invasive Surgeries using
AttentionMask
- URL: http://arxiv.org/abs/2203.11358v1
- Date: Mon, 21 Mar 2022 21:37:56 GMT
- Title: Segmenting Medical Instruments in Minimally Invasive Surgeries using
AttentionMask
- Authors: Christian Wilms, Alexander Michael Gerlach, R\"udiger Schmitz, Simone
Frintrop
- Abstract summary: We adapt the object proposal generation system AttentionMask and propose a dedicated post-processing to select promising proposals.
The results on the ROBUST-MIS Challenge 2019 show that our adapted AttentionMask system is a strong foundation for generating state-of-the-art performance.
- Score: 66.63753229115983
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Precisely locating and segmenting medical instruments in images of minimally
invasive surgeries, medical instrument segmentation, is an essential first step
for several tasks in medical image processing. However, image degradations,
small instruments, and the generalization between different surgery types make
medical instrument segmentation challenging. To cope with these challenges, we
adapt the object proposal generation system AttentionMask and propose a
dedicated post-processing to select promising proposals. The results on the
ROBUST-MIS Challenge 2019 show that our adapted AttentionMask system is a
strong foundation for generating state-of-the-art performance. Our evaluation
in an object proposal generation framework shows that our adapted AttentionMask
system is robust to image degradations, generalizes well to unseen types of
surgeries, and copes well with small instruments.
Related papers
- Amodal Segmentation for Laparoscopic Surgery Video Instruments [30.39518393494816]
We introduce AmodalVis to the realm of surgical instruments in the medical field.
This technique identifies both the visible and occluded parts of an object.
To achieve this, we introduce a new Amoal Instruments dataset.
arXiv Detail & Related papers (2024-08-02T07:40:34Z) - Advancing Medical Image Segmentation with Mini-Net: A Lightweight Solution Tailored for Efficient Segmentation of Medical Images [18.48562660373185]
Mini-Net is a lightweight segmentation network specifically designed for medical images.
With fewer than 38,000 parameters, Mini-Net efficiently captures both high- and low-frequency features.
We evaluate Mini-Net on various datasets, including DRIVE, STARE, ISIC-2016, ISIC-2018, and MoNuSeg.
arXiv Detail & Related papers (2024-05-27T11:41:48Z) - SEGSRNet for Stereo-Endoscopic Image Super-Resolution and Surgical Instrument Segmentation [0.5461938536945723]
SEGSRNet addresses the challenge of precisely identifying surgical instruments in low-resolution stereo endoscopic images.
Our innovative framework enhances image clarity and segmentation accuracy by applying state-of-the-art super-resolution techniques before segmentation.
arXiv Detail & Related papers (2024-04-20T09:27:05Z) - AMLP:Adaptive Masking Lesion Patches for Self-supervised Medical Image
Segmentation [67.97926983664676]
Self-supervised masked image modeling has shown promising results on natural images.
However, directly applying such methods to medical images remains challenging.
We propose a novel self-supervised medical image segmentation framework, Adaptive Masking Lesion Patches (AMLP)
arXiv Detail & Related papers (2023-09-08T13:18:10Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Text Promptable Surgical Instrument Segmentation with Vision-Language
Models [16.203166812021045]
We propose a novel text promptable surgical instrument segmentation approach to overcome challenges associated with diversity and differentiation of surgical instruments.
We leverage pretrained image and text encoders as our model backbone and design a text promptable mask decoder.
Experiments on several surgical instrument segmentation datasets demonstrate our model's superior performance and promising generalization capability.
arXiv Detail & Related papers (2023-06-15T16:26:20Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose
Estimation of Surgical Instruments [66.74633676595889]
We present a multi-camera capture setup consisting of static and head-mounted cameras.
Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.
Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - Multimodal Semantic Scene Graphs for Holistic Modeling of Surgical
Procedures [70.69948035469467]
We take advantage of the latest computer vision methodologies for generating 3D graphs from camera views.
We then introduce the Multimodal Semantic Graph Scene (MSSG) which aims at providing unified symbolic and semantic representation of surgical procedures.
arXiv Detail & Related papers (2021-06-09T14:35:44Z) - Contrastive Registration for Unsupervised Medical Image Segmentation [1.5125686694430571]
We present a novel contrastive registration architecture for unsupervised medical image segmentation.
Firstly, we propose an architecture to capture the image-to-image transformation pattern via registration for unsupervised medical image segmentation.
Secondly, we embed a contrastive learning mechanism into the registration architecture to enhance the discriminating capacity of the network in the feature-level.
arXiv Detail & Related papers (2020-11-17T19:29:08Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.