Contrastive Registration for Unsupervised Medical Image Segmentation
- URL: http://arxiv.org/abs/2011.08894v3
- Date: Wed, 20 Jul 2022 23:39:17 GMT
- Title: Contrastive Registration for Unsupervised Medical Image Segmentation
- Authors: Lihao Liu, Angelica I Aviles-Rivero, Carola-Bibiane Sch\"onlieb
- Abstract summary: We present a novel contrastive registration architecture for unsupervised medical image segmentation.
Firstly, we propose an architecture to capture the image-to-image transformation pattern via registration for unsupervised medical image segmentation.
Secondly, we embed a contrastive learning mechanism into the registration architecture to enhance the discriminating capacity of the network in the feature-level.
- Score: 1.5125686694430571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation is a relevant task as it serves as the first step
for several diagnosis processes, thus it is indispensable in clinical usage.
Whilst major success has been reported using supervised techniques, they assume
a large and well-representative labelled set. This is a strong assumption in
the medical domain where annotations are expensive, time-consuming, and
inherent to human bias. To address this problem, unsupervised techniques have
been proposed in the literature yet it is still an open problem due to the
difficulty of learning any transformation pattern. In this work, we present a
novel optimisation model framed into a new CNN-based contrastive registration
architecture for unsupervised medical image segmentation. The core of our
approach is to exploit image-level registration and feature-level from a
contrastive learning mechanism, to perform registration-based segmentation.
Firstly, we propose an architecture to capture the image-to-image
transformation pattern via registration for unsupervised medical image
segmentation. Secondly, we embed a contrastive learning mechanism into the
registration architecture to enhance the discriminating capacity of the network
in the feature-level. We show that our proposed technique mitigates the major
drawbacks of existing unsupervised techniques. We demonstrate, through
numerical and visual experiments, that our technique substantially outperforms
the current state-of-the-art unsupervised segmentation methods on two major
medical image datasets.
Related papers
- Weakly Supervised Intracranial Hemorrhage Segmentation using Head-Wise
Gradient-Infused Self-Attention Maps from a Swin Transformer in Categorical
Learning [0.6269243524465492]
Intracranial hemorrhage (ICH) is a life-threatening medical emergency that requires timely diagnosis and accurate treatment.
Deep learning techniques have emerged as the leading approach for medical image analysis and processing.
We introduce a novel weakly supervised method for ICH segmentation, utilizing a Swin transformer trained on an ICH classification task with categorical labels.
arXiv Detail & Related papers (2023-04-11T00:17:34Z) - Few Shot Medical Image Segmentation with Cross Attention Transformer [30.54965157877615]
We propose a novel framework for few-shot medical image segmentation, termed CAT-Net.
Our proposed network mines the correlations between the support image and query image, limiting them to focus only on useful foreground information.
We validated the proposed method on three public datasets: Abd-CT, Abd-MRI, and Card-MRI.
arXiv Detail & Related papers (2023-03-24T09:10:14Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - PC-SwinMorph: Patch Representation for Unsupervised Medical Image
Registration and Segmentation [1.148305004803775]
We propose a novel unified unsupervised framework for image registration and segmentation that we called PC-SwinMorph.
The core of our framework is two patch-based strategies, where we demonstrate that patch representation is key for performance gain.
We demonstrate, through a set of numerical and visual results, that our technique outperforms current state-of-the-art unsupervised techniques.
arXiv Detail & Related papers (2022-03-10T23:56:29Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
We aim to boost the performance of semi-supervised learning for medical image segmentation with limited labels.
We learn latent representations directly at feature-level by imposing contrastive loss on unlabeled images.
We conduct experiments on an MRI and a CT segmentation dataset and demonstrate that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T03:27:58Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z) - Learning Deformable Registration of Medical Images with Anatomical
Constraints [4.397224870979238]
Deformable image registration is a fundamental problem in the field of medical image analysis.
We learn global non-linear representations of image anatomy using segmentation masks, and employ them to constraint the registration process.
Our experiments show that the proposed anatomically constrained registration model produces more realistic and accurate results than state-of-the-art methods.
arXiv Detail & Related papers (2020-01-20T17:44:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.