Semi-Targeted Model Poisoning Attack on Federated Learning via Backward
Error Analysis
- URL: http://arxiv.org/abs/2203.11633v1
- Date: Tue, 22 Mar 2022 11:40:07 GMT
- Title: Semi-Targeted Model Poisoning Attack on Federated Learning via Backward
Error Analysis
- Authors: Yuwei Sun, Hideya Ochiai, Jun Sakuma
- Abstract summary: Model poisoning attacks on federated learning (FL) intrude in the entire system via compromising an edge model.
We propose the Attacking Distance-aware Attack (ADA) to enhance a poisoning attack by finding the optimized target class in the feature space.
ADA succeeded in increasing the attack performance by 1.8 times in the most challenging case with an attacking frequency of 0.01.
- Score: 15.172954465350667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model poisoning attacks on federated learning (FL) intrude in the entire
system via compromising an edge model, resulting in malfunctioning of machine
learning models. Such compromised models are tampered with to perform
adversary-desired behaviors. In particular, we considered a semi-targeted
situation where the source class is predetermined however the target class is
not. The goal is to cause the global classifier to misclassify data of the
source class. Though approaches such as label flipping have been adopted to
inject poisoned parameters into FL, it has been shown that their performances
are usually class-sensitive varying with different target classes applied.
Typically, an attack can become less effective when shifting to a different
target class. To overcome this challenge, we propose the Attacking
Distance-aware Attack (ADA) to enhance a poisoning attack by finding the
optimized target class in the feature space. Moreover, we studied a more
challenging situation where an adversary had limited prior knowledge about a
client's data. To tackle this problem, ADA deduces pair-wise distances between
different classes in the latent feature space from shared model parameters
based on the backward error analysis. We performed extensive empirical
evaluations on ADA by varying the factor of attacking frequency in three
different image classification tasks. As a result, ADA succeeded in increasing
the attack performance by 1.8 times in the most challenging case with an
attacking frequency of 0.01.
Related papers
- Model Hijacking Attack in Federated Learning [19.304332176437363]
HijackFL is the first-of-its-kind hijacking attack against the global model in federated learning.
It aims to force the global model to perform a different task from its original task without the server or benign client noticing.
We conduct extensive experiments on four benchmark datasets and three popular models.
arXiv Detail & Related papers (2024-08-04T20:02:07Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - DALA: A Distribution-Aware LoRA-Based Adversarial Attack against
Language Models [64.79319733514266]
Adversarial attacks can introduce subtle perturbations to input data.
Recent attack methods can achieve a relatively high attack success rate (ASR)
We propose a Distribution-Aware LoRA-based Adversarial Attack (DALA) method.
arXiv Detail & Related papers (2023-11-14T23:43:47Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Federated Zero-Shot Learning for Visual Recognition [55.65879596326147]
We propose a novel Federated Zero-Shot Learning FedZSL framework.
FedZSL learns a central model from the decentralized data residing on edge devices.
The effectiveness and robustness of FedZSL are demonstrated by extensive experiments conducted on three zero-shot benchmark datasets.
arXiv Detail & Related papers (2022-09-05T14:49:34Z) - Defending against the Label-flipping Attack in Federated Learning [5.769445676575767]
Federated learning (FL) provides autonomy and privacy by design to participating peers.
The label-flipping (LF) attack is a targeted poisoning attack where the attackers poison their training data by flipping the labels of some examples.
We propose a novel defense that first dynamically extracts those gradients from the peers' local updates.
arXiv Detail & Related papers (2022-07-05T12:02:54Z) - FL-Defender: Combating Targeted Attacks in Federated Learning [7.152674461313707]
Federated learning (FL) enables learning a global machine learning model from local data distributed among a set of participating workers.
FL is vulnerable to targeted poisoning attacks that negatively impact the integrity of the learned model.
We propose textitFL-Defender as a method to combat FL targeted attacks.
arXiv Detail & Related papers (2022-07-02T16:04:46Z) - Adversarial Transfer Attacks With Unknown Data and Class Overlap [19.901933940805684]
Current transfer attack research has an unrealistic advantage for the attacker.
We present the first study of transferring adversarial attacks focusing on the data available to attacker and victim under imperfect settings.
This threat model is relevant to applications in medicine, malware, and others.
arXiv Detail & Related papers (2021-09-23T03:41:34Z) - Untargeted, Targeted and Universal Adversarial Attacks and Defenses on
Time Series [0.0]
We have performed untargeted, targeted and universal adversarial attacks on UCR time series datasets.
Our results show that deep learning based time series classification models are vulnerable to these attacks.
We also show that universal adversarial attacks have good generalization property as it need only a fraction of the training data.
arXiv Detail & Related papers (2021-01-13T13:00:51Z) - Robustness May Be at Odds with Fairness: An Empirical Study on
Class-wise Accuracy [85.20742045853738]
CNNs are widely known to be vulnerable to adversarial attacks.
We propose an empirical study on the class-wise accuracy and robustness of adversarially trained models.
We find that there exists inter-class discrepancy for accuracy and robustness even when the training dataset has an equal number of samples for each class.
arXiv Detail & Related papers (2020-10-26T06:32:32Z) - CD-UAP: Class Discriminative Universal Adversarial Perturbation [83.60161052867534]
A single universal adversarial perturbation (UAP) can be added to all natural images to change most of their predicted class labels.
We propose a new universal attack method to generate a single perturbation that fools a target network to misclassify only a chosen group of classes.
arXiv Detail & Related papers (2020-10-07T09:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.