論文の概要: A Method for Estimating Individual Socioeconomic Status of Twitter Users
- arxiv url: http://arxiv.org/abs/2203.11636v2
- Date: Mon, 13 Feb 2023 15:29:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 15:48:31.082369
- Title: A Method for Estimating Individual Socioeconomic Status of Twitter Users
- Title(参考訳): Twitter利用者の個人社会経済状態推定手法
- Authors: Yuanmo He, Milena Tsvetkova
- Abstract要約: われわれは、Twitterユーザーがフォローしている商業およびエンターテイメントのアカウントが、彼らの経済と文化の資本を反映していると主張している。
我々は、米国内の339ブランドのアカウントをフォローしている3,482,652人のTwitterユーザーのSESを、対応分析を用いて推定する。
その結果、SESの標準プロキシと合理的な相関を示すとともに、他の人口統計学的変数とのより弱い相関や非重要な相関を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rise of social media has opened countless opportunities to explore social
science questions with new data and methods. However, research on socioeconomic
inequality remains constrained by limited individual-level socioeconomic status
(SES) measures in digital trace data. Following Bourdieu, we argue that the
commercial and entertainment accounts Twitter users follow reflect their
economic and cultural capital. Adapting a political science method for
inferring political ideology, we use correspondence analysis to estimate the
SES of 3,482,652 Twitter users who follow the accounts of 339 brands in the
United States. We validate our estimates with data from the Facebook Marketing
API, self-reported job titles on users' Twitter profiles, and a small survey
sample. The results show reasonable correlations with the standard proxies for
SES, alongside much weaker or non-significant correlations with other
demographic variables. The proposed method opens new opportunities for
innovative social research on inequality on Twitter and similar online
platforms.
- Abstract(参考訳): ソーシャルメディアの台頭は、新しいデータと手法で社会科学の疑問を探求する無数の機会を開いている。
しかし、社会経済的不平等の研究は、デジタルトレースデータにおける個人レベルの社会経済的地位(ses)の制限によって制約されている。
Bourdieuに続いて、Twitterユーザーがフォローしている商業およびエンターテイメントのアカウントは、彼らの経済と文化の資本を反映していると主張する。
政治イデオロギーを推測する政治学の手法を適用し,米国内の339ブランドのアカウントをフォローする3,482,652人のtwitterユーザのsesを,通信分析を用いて推定する。
facebook marketing apiのデータや、ユーザのtwitterプロフィールに自己報告されたジョブタイトル、そして小さな調査サンプルを使って、見積もりを検証する。
その結果、SESの標準プロキシと合理的な相関を示すとともに、他の人口統計学的変数とのより弱い相関や非重要な相関を示す。
提案手法は,twitter等のオンラインプラットフォームにおける不平等に関する革新的社会研究の新たな機会を開くものである。
関連論文リスト
- Easy-access online social media metrics can effectively identify misinformation sharing users [41.94295877935867]
高いツイート頻度は共有コンテンツの事実性の低さと正に関連しているのに対し、アカウント年齢はそれと負に関連していることがわかった。
以上の結果から,これらのソーシャル・ネットワークの指標を頼りにすることで,誤情報を拡散しやすいユーザを早期に識別する,低障壁なアプローチが実現する可能性が示唆された。
論文 参考訳(メタデータ) (2024-08-27T16:41:13Z) - Balancing User Preferences by Social Networks: A Condition-Guided Social Recommendation Model for Mitigating Popularity Bias [64.73474454254105]
ソーシャルレコメンデーションモデルは、ユーザに対してユニークなパーソナライズされたレコメンデーション結果を提供するために、ソーシャルインタラクションをデザインに織り込む。
既存のソーシャルレコメンデーションモデルは、人気バイアスや社会的情報の冗長性の問題に対処できない。
本稿では,モデルの人気バイアスを軽減するための条件付きソーシャルレコメンデーションモデル(CGSoRec)を提案する。
論文 参考訳(メタデータ) (2024-05-27T02:45:01Z) - DeSIQ: Towards an Unbiased, Challenging Benchmark for Social
Intelligence Understanding [60.84356161106069]
複雑な社会的相互作用のビデオ上での複数選択質問のデータセットであるSocial-IQの健全性について検討する。
分析の結果,Social-IQにはある程度のバイアスがあり,適度に強い言語モデルによって活用できることがわかった。
ソーシャルIQに単純な摂動を適用して構築した,新たな挑戦的データセットであるDeSIQを紹介する。
論文 参考訳(メタデータ) (2023-10-24T06:21:34Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - Design and analysis of tweet-based election models for the 2021 Mexican
legislative election [55.41644538483948]
選挙日前の6ヶ月の間に、1500万件の選挙関連ツイートのデータセットを使用します。
地理的属性を持つデータを用いたモデルが従来のポーリング法よりも精度と精度で選挙結果を決定することがわかった。
論文 参考訳(メタデータ) (2023-01-02T12:40:05Z) - Fast Few shot Self-attentive Semi-supervised Political Inclination
Prediction [12.472629584751509]
政策立案者やジャーナリストにとって、特定の場所にいる人々の政治的傾向を理解するために、ソーシャルメディア上でオンライン世論調査を作成することは、今やますます一般的になっている。
我々は、その目的をさらに進めるために、政治的傾き検出のための自己注意型半教師付きフレームワークを導入する。
資源制約のある設定でも,モデルは非常に効率的であることがわかった。
論文 参考訳(メタデータ) (2022-09-21T12:07:16Z) - Retweet-BERT: Political Leaning Detection Using Language Features and
Information Diffusion on Social Networks [30.143148646797265]
Retweet-BERTは、シンプルでスケーラブルなモデルで、Twitterユーザーの政治的傾向を推定する。
我々の仮定は、同様のイデオロギーを共有する人々の間で、ネットワークや言語学のパターンがホモフィリーであることに由来する。
論文 参考訳(メタデータ) (2022-07-18T02:18:20Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - SocialVec: Social Entity Embeddings [1.4010916616909745]
本稿では,ソーシャルワールドの知識をソーシャルネットワークから引き出すためのフレームワークであるSocialVecを紹介する。
Twitterネットワークのサンプルから、約20万の人気のアカウントのソーシャル埋め込みを学びました。
われわれはSocialVecの埋め込みを利用して、Twitterのニュースソースの政治的偏見を誇示している。
論文 参考訳(メタデータ) (2021-11-05T14:13:01Z) - How Twitter Data Sampling Biases U.S. Voter Behavior Characterizations [6.364128212193265]
近年の研究では、悪質な社会ボットやトロルのような不正なアクターの存在が明らかにされている。
本稿では,2018年米国中間選挙のTwitterデータを用いて,このギャップを埋めることを目的としている。
ハイパーアクティブアカウントは、様々な不審な振る舞いを示し、低信頼度情報を共有する傾向にあることを示す。
論文 参考訳(メタデータ) (2020-06-02T08:33:30Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。