Machine Learning based Laser Failure Mode Detection
- URL: http://arxiv.org/abs/2203.11729v1
- Date: Sat, 19 Mar 2022 09:46:19 GMT
- Title: Machine Learning based Laser Failure Mode Detection
- Authors: khouloud Abdelli, Danish Rafique, and Stephan Pachnicke
- Abstract summary: We propose a data-driven fault detection approach based on Long Short-Term Memory (LSTM) recurrent neural networks to detect the different laser degradation modes.
attaining 24.41% classification accuracy, the LSTM-based model achieves 95.52% accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Laser degradation analysis is a crucial process for the enhancement of laser
reliability. Here, we propose a data-driven fault detection approach based on
Long Short-Term Memory (LSTM) recurrent neural networks to detect the different
laser degradation modes based on synthetic historical failure data. In
comparison to typical threshold-based systems, attaining 24.41% classification
accuracy, the LSTM-based model achieves 95.52% accuracy, and also outperforms
classical machine learning (ML) models namely Random Forest (RF), K-Nearest
Neighbours (KNN) and Logistic Regression (LR).
Related papers
- Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Degradation Prediction of Semiconductor Lasers using Conditional
Variational Autoencoder [0.0]
We propose a new data-driven approach to predict the degradation trend without requiring any specific knowledge or using any physical model.
The proposed approach is based on an unsupervised technique, a conditional variational autoencoder, and validated using vertical-cavity surface-emitting laser (VCSEL) and tunable edge emitting laser reliability data.
The experimental results confirm that our model (i) achieves a good degradation prediction and generalization performance by yielding an F1 score of 95.3%, (ii) outperforms several baseline ML based anomaly detection techniques, and (iii) helps to shorten the aging tests by early predicting the failed devices
arXiv Detail & Related papers (2022-11-05T08:10:11Z) - A Machine Learning-based Framework for Predictive Maintenance of
Semiconductor Laser for Optical Communication [0.0]
The proposed framework is validated using experimental data derived from accelerated aging tests conducted for semiconductor tunable lasers.
The proposed approach achieves a very good degradation performance prediction capability with a small root mean square error (RMSE) of 0.01, a good anomaly detection accuracy of 94.24% and a better RUL estimation capability compared to the existing ML-based laser RUL prediction models.
arXiv Detail & Related papers (2022-11-05T07:53:02Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
State-of-the-art language models (LMs) represented by long-short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming increasingly complex and expensive for practical applications.
Current quantization methods are based on uniform precision and fail to account for the varying performance sensitivity at different parts of LMs to quantization errors.
Novel mixed precision neural network LM quantization methods are proposed in this paper.
arXiv Detail & Related papers (2021-11-29T12:24:02Z) - An Efficient Deep Learning Model for Automatic Modulation Recognition
Based on Parameter Estimation and Transformation [3.3941243094128035]
This letter proposes an efficient DL-AMR model based on phase parameter estimation and transformation.
Our model is more competitive in training time and test time than the benchmark models with similar recognition accuracy.
arXiv Detail & Related papers (2021-10-11T03:28:28Z) - Invertible Surrogate Models: Joint surrogate modelling and
reconstruction of Laser-Wakefield Acceleration by invertible neural networks [55.41644538483948]
Invertible neural networks are a recent technique in machine learning.
We will be introducing invertible surrogate models that approximate complex forward simulation of the physics involved in laser plasma accelerators: iLWFA.
arXiv Detail & Related papers (2021-06-01T12:26:10Z) - A Taylor Based Sampling Scheme for Machine Learning in Computational
Physics [0.0]
We take advantage of the ability to generate data using numerical simulations programs to train Machine Learning models better.
We elaborate a new data sampling scheme based on Taylor approximation to reduce the error of a Deep Neural Network (DNN) when learning the solution of an ordinary differential equations (ODE) system.
arXiv Detail & Related papers (2021-01-20T12:56:09Z) - Compressing LSTM Networks by Matrix Product Operators [7.395226141345625]
Long Short Term Memory(LSTM) models are the building blocks of many state-of-the-art natural language processing(NLP) and speech enhancement(SE) algorithms.
Here we introduce the MPO decomposition, which describes the local correlation of quantum states in quantum many-body physics.
We propose a matrix product operator(MPO) based neural network architecture to replace the LSTM model.
arXiv Detail & Related papers (2020-12-22T11:50:06Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.