Degradation Prediction of Semiconductor Lasers using Conditional
Variational Autoencoder
- URL: http://arxiv.org/abs/2211.02847v1
- Date: Sat, 5 Nov 2022 08:10:11 GMT
- Title: Degradation Prediction of Semiconductor Lasers using Conditional
Variational Autoencoder
- Authors: Khouloud Abdelli, Helmut Griesser, Christian Neumeyr, Robert
Hohenleitner, and Stephan Pachnicke
- Abstract summary: We propose a new data-driven approach to predict the degradation trend without requiring any specific knowledge or using any physical model.
The proposed approach is based on an unsupervised technique, a conditional variational autoencoder, and validated using vertical-cavity surface-emitting laser (VCSEL) and tunable edge emitting laser reliability data.
The experimental results confirm that our model (i) achieves a good degradation prediction and generalization performance by yielding an F1 score of 95.3%, (ii) outperforms several baseline ML based anomaly detection techniques, and (iii) helps to shorten the aging tests by early predicting the failed devices
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semiconductor lasers have been rapidly evolving to meet the demands of
next-generation optical networks. This imposes much more stringent requirements
on the laser reliability, which are dominated by degradation mechanisms (e.g.,
sudden degradation) limiting the semiconductor laser lifetime. Physics-based
approaches are often used to characterize the degradation behavior
analytically, yet explicit domain knowledge and accurate mathematical models
are required. Building such models can be very challenging due to a lack of a
full understanding of the complex physical processes inducing the degradation
under various operating conditions. To overcome the aforementioned limitations,
we propose a new data-driven approach, extracting useful insights from the
operational monitored data to predict the degradation trend without requiring
any specific knowledge or using any physical model. The proposed approach is
based on an unsupervised technique, a conditional variational autoencoder, and
validated using vertical-cavity surface-emitting laser (VCSEL) and tunable edge
emitting laser reliability data. The experimental results confirm that our
model (i) achieves a good degradation prediction and generalization performance
by yielding an F1 score of 95.3%, (ii) outperforms several baseline ML based
anomaly detection techniques, and (iii) helps to shorten the aging tests by
early predicting the failed devices before the end of the test and thereby
saving costs
Related papers
- Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics.
Recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes.
We propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls.
arXiv Detail & Related papers (2023-10-30T18:43:21Z) - Physics-Driven ML-Based Modelling for Correcting Inverse Estimation [6.018296524383859]
This work focuses on detecting and correcting failed state estimations before adopting them in SAE inverse problems.
We propose a novel approach, GEESE, to correct it through optimization, aiming at delivering both low error and high efficiency.
GEESE is tested on three real-world SAE inverse problems and compared to a number of state-of-the-art optimization/search approaches.
arXiv Detail & Related papers (2023-09-25T09:37:19Z) - Distance Preserving Machine Learning for Uncertainty Aware Accelerator
Capacitance Predictions [1.1776336798216411]
Deep neural networks and Gaussian process approximation techniques have shown promising results, but dimensionality reduction through standard deep neural network layers is not guaranteed to maintain the distance information necessary for Gaussian process models.
We build on previous work by comparing the use of the singular value decomposition against a spectral-normalized dense layer as a feature extractor for a deep neural Gaussian process approximation model.
Our model shows improved distance preservation and predicts in-distribution capacitance values with less than 1% error.
arXiv Detail & Related papers (2023-07-05T15:32:39Z) - Neuro-symbolic model for cantilever beams damage detection [0.0]
We propose a neuro-symbolic model for the detection of damages in cantilever beams based on a novel cognitive architecture.
The hybrid discriminative model is introduced under the name Logic Convolutional Neural Regressor.
arXiv Detail & Related papers (2023-05-04T13:12:39Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
Recent developments in artificial neural networks, particularly deep learning (DL), are reviewed in detail.
Both hybrid and pure machine learning (ML) methods are discussed.
History and limitations of AI are recounted and discussed, with particular attention at pointing out misstatements or misconceptions of the classics.
arXiv Detail & Related papers (2022-12-18T02:03:00Z) - A Machine Learning-based Framework for Predictive Maintenance of
Semiconductor Laser for Optical Communication [0.0]
The proposed framework is validated using experimental data derived from accelerated aging tests conducted for semiconductor tunable lasers.
The proposed approach achieves a very good degradation performance prediction capability with a small root mean square error (RMSE) of 0.01, a good anomaly detection accuracy of 94.24% and a better RUL estimation capability compared to the existing ML-based laser RUL prediction models.
arXiv Detail & Related papers (2022-11-05T07:53:02Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z) - Machine Learning based Laser Failure Mode Detection [0.0]
We propose a data-driven fault detection approach based on Long Short-Term Memory (LSTM) recurrent neural networks to detect the different laser degradation modes.
attaining 24.41% classification accuracy, the LSTM-based model achieves 95.52% accuracy.
arXiv Detail & Related papers (2022-03-19T09:46:19Z) - Direct phase modulation via optical injection: theoretical study [50.591267188664666]
We study the influence of the spontaneous emission noise, examine the role of the gain non-linearity and consider the effect of the temperature drift.
We have tried to formulate here practical instructions, which will help to take these features into account when elaborating and employing the optical-injection-based phase modulator.
arXiv Detail & Related papers (2020-11-18T13:20:04Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.