A Taylor Based Sampling Scheme for Machine Learning in Computational
Physics
- URL: http://arxiv.org/abs/2101.11105v2
- Date: Thu, 28 Jan 2021 12:48:18 GMT
- Title: A Taylor Based Sampling Scheme for Machine Learning in Computational
Physics
- Authors: Paul Novello (CEA, Inria, X), Ga\"el Po\"ette (CEA), David Lugato
(CEA), Pietro Congedo (Inria, X)
- Abstract summary: We take advantage of the ability to generate data using numerical simulations programs to train Machine Learning models better.
We elaborate a new data sampling scheme based on Taylor approximation to reduce the error of a Deep Neural Network (DNN) when learning the solution of an ordinary differential equations (ODE) system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning (ML) is increasingly used to construct surrogate models for
physical simulations. We take advantage of the ability to generate data using
numerical simulations programs to train ML models better and achieve accuracy
gain with no performance cost. We elaborate a new data sampling scheme based on
Taylor approximation to reduce the error of a Deep Neural Network (DNN) when
learning the solution of an ordinary differential equations (ODE) system.
Related papers
- Learning Density Functionals from Noisy Quantum Data [0.0]
noisy intermediate-scale quantum (NISQ) devices are used to generate training data for machine learning (ML) models.
We show that a neural-network ML model can successfully generalize from small datasets subject to noise typical of NISQ algorithms.
Our findings suggest a promising pathway for leveraging NISQ devices in practical quantum simulations.
arXiv Detail & Related papers (2024-09-04T17:59:55Z) - Addressing Data Scarcity in Optical Matrix Multiplier Modeling Using
Transfer Learning [0.0]
We present and experimentally evaluate using transfer learning to address experimental data scarcity.
Our approach involves pre-training the model using synthetic data generated from a less accurate analytical model.
We achieve 1 dB root-mean-square error on the matrix weights implemented by a 3x3 photonic chip while using only 25% of the available data.
arXiv Detail & Related papers (2023-08-10T07:33:00Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Data efficient surrogate modeling for engineering design: Ensemble-free
batch mode deep active learning for regression [0.6021787236982659]
We propose a simple and scalable approach for active learning that works in a student-teacher manner to train a surrogate model.
By using this proposed approach, we are able to achieve the same level of surrogate accuracy as the other baselines like DBAL and Monte Carlo sampling.
arXiv Detail & Related papers (2022-11-16T02:31:57Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Exponentially improved detection and correction of errors in
experimental systems using neural networks [0.0]
We introduce the use of two machine learning algorithms to create an empirical model of an experimental apparatus.
This is able to reduce the number of measurements necessary for generic optimisation tasks exponentially.
We demonstrate both algorithms at the example of detecting and compensating stray electric fields in an ion trap.
arXiv Detail & Related papers (2020-05-18T22:42:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.