Analog quantum control of magnonic cat states on-a-chip by a
superconducting qubit
- URL: http://arxiv.org/abs/2203.11893v2
- Date: Thu, 14 Jul 2022 11:40:06 GMT
- Title: Analog quantum control of magnonic cat states on-a-chip by a
superconducting qubit
- Authors: Marios Kounalakis, Gerrit E. W. Bauer, Yaroslav M. Blanter
- Abstract summary: We propose to directly and quantum-coherently couple a superconducting transmon qubit to magnons in a nearby magnetic particle.
We predict a resonant qubit-magnon exchange and a nonlinear radiation-pressure interaction.
We demonstrate a quantum control scheme that generates qubit-magnon entanglement and magnonic Schr"odinger cat states with high fidelity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose to directly and quantum-coherently couple a superconducting
transmon qubit to magnons - the quanta of the collective spin excitations, in a
nearby magnetic particle. The magnet's stray field couples to the qubit via a
superconducting quantum interference device (SQUID). We predict a resonant
qubit-magnon exchange and a nonlinear radiation-pressure interaction that are
both stronger than dissipation rates and tunable by an external flux bias. We
additionally demonstrate a quantum control scheme that generates qubit-magnon
entanglement and magnonic Schr\"{o}dinger cat states with high fidelity.
Related papers
- Strong coupling of a superconducting flux qubit to single bismuth donors [0.0]
Single bismuth donors can coherently transfer their quantum information to a superconducting flux qubit.
This superconducting device allows to connect distant spins on-demand with little impact on their coherent behavior.
arXiv Detail & Related papers (2024-11-05T06:54:09Z) - Quantum Sensing of Antiferromagnetic Magnon Two-Mode Squeezed Vacuum [0.0]
N'eel ordered antiferromagnets exhibit two-mode squeezing such that their ground state is a nonclassical superposition of magnon Fock states.
We show that this kind of coupling induces a magnon number dependent level splitting of the excited state resulting in multiple system excitation energies.
arXiv Detail & Related papers (2024-02-20T18:12:59Z) - Coherent control of orbital wavefunctions in the quantum spin liquid
$Tb_{2}Ti_{2}O_{7}$ [0.0]
We show coherent control of orbital wavefunctions in pyrochlore $Tb_2Ti_2O_7$.
We show that resonant excitation with a strong THz pulse creates a coherent superposition of the lowest energy Tb 4f states.
arXiv Detail & Related papers (2023-09-22T09:53:13Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Long-range exchange interaction between spin qubits mediated by a
superconducting link at finite magnetic field [0.0]
We study a setup where such an extension is obtained by using a superconductor as a quantum mediator.
We show that while spin non-conserving tunneling between the dots and the superconductor does not affect the exchange interaction, strong SO scattering in the superconducting bulk is detrimental.
arXiv Detail & Related papers (2020-09-12T11:58:47Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Dissipation-based Quantum Sensing of Magnons with a Superconducting
Qubit [0.2770822269241974]
We experimentally demonstrate quantum sensing of the steady-state magnon population in a magnetostatic mode of a ferrimagnetic crystal.
The protocol is based on dissipation as dephasing via fluctuations in the magnetostatic mode reduces the qubit coherence proportionally to the number of magnons.
arXiv Detail & Related papers (2020-05-19T07:01:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.