Quantum Sensing of Antiferromagnetic Magnon Two-Mode Squeezed Vacuum
- URL: http://arxiv.org/abs/2402.13203v2
- Date: Wed, 8 May 2024 10:10:49 GMT
- Title: Quantum Sensing of Antiferromagnetic Magnon Two-Mode Squeezed Vacuum
- Authors: Anna-Luisa E. Römling, Akashdeep Kamra,
- Abstract summary: N'eel ordered antiferromagnets exhibit two-mode squeezing such that their ground state is a nonclassical superposition of magnon Fock states.
We show that this kind of coupling induces a magnon number dependent level splitting of the excited state resulting in multiple system excitation energies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: N\'eel ordered antiferromagnets exhibit two-mode squeezing such that their ground state is a nonclassical superposition of magnon Fock states. Here we theoretically demonstrate that antiferromagnets can couple to spin qubits via direct dispersive interaction stemming from, e.g., interfacial exchange. We demonstrate that this kind of coupling induces a magnon number dependent level splitting of the excited state resulting in multiple system excitation energies. This series of level splittings manifests itself as nontrivial excitation peaks in qubit spectroscopy thereby revealing the underlying nonclassical magnon composition of the antiferromagnetic quantum state. By appropriately choosing the drive or excitation energy, the magnonic state can be controlled via the qubit, suggesting that Fock states of magnon pairs can be generated deterministically. This enables achieving states useful for quantum computing and quantum information science protocols.
Related papers
- Resolving nonclassical magnon composition of a magnetic ground state via
a qubit [44.99833362998488]
We show that a direct dispersive coupling between a qubit and a noneigenmode magnon enables detecting the magnonic number states' quantum superposition.
This unique coupling is found to enable control over the equilibrium magnon squeezing and a deterministic generation of squeezed even Fock states.
arXiv Detail & Related papers (2023-06-08T09:30:04Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Quantum control of a single magnon in a macroscopic spin system [13.325952805096412]
We generate non-classical quantum states in a macroscopic spin system using tuning the qubit frequency it in situ via the Autler-Townes effect.
We confirm the deterministic generation of these non-classical states by Wigner tomography.
Our experiment offers the first reported deterministic generation of the non-classical quantum states in a macroscopic spin system.
arXiv Detail & Related papers (2022-11-12T11:40:08Z) - Analog quantum control of magnonic cat states on-a-chip by a
superconducting qubit [0.0]
We propose to directly and quantum-coherently couple a superconducting transmon qubit to magnons in a nearby magnetic particle.
We predict a resonant qubit-magnon exchange and a nonlinear radiation-pressure interaction.
We demonstrate a quantum control scheme that generates qubit-magnon entanglement and magnonic Schr"odinger cat states with high fidelity.
arXiv Detail & Related papers (2022-03-22T17:05:17Z) - Understanding the propagation of excitations in quantum spin chains with
different kind of interactions [68.8204255655161]
It is shown that the inhomogeneous chains are able to transfer excitations with near perfect fidelity.
It is shown that both designed chains have in common a partially ordered spectrum and well localized eigenvectors.
arXiv Detail & Related papers (2021-12-31T15:09:48Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Bell-state generation for spin qubits via dissipative coupling [3.011018394325566]
We investigate the dynamics of two spin qubits interacting with a magnetic medium.
We show how a sizable long-lived entanglement can be established via the magnetic environment.
Our study may find applications in quantum information science, quantum spintronics, and for sensing of nonlocal quantum correlations.
arXiv Detail & Related papers (2021-08-16T22:36:48Z) - Magnon-magnon entanglement and its detection in a microwave cavity [0.0]
Quantum magnonics is an emerging research field with great potential for applications in quantum information processing.
We investigate antiferromagnets in which sublattices with ferromagnetic interactions can have two different magnon modes.
We show how this may lead to experimentally detectable bipartite continuous variable magnon-magnon entanglement.
arXiv Detail & Related papers (2021-06-12T20:46:55Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.