Quantum simulation using noisy unitary circuits and measurements
- URL: http://arxiv.org/abs/2112.06682v2
- Date: Tue, 21 Dec 2021 12:06:43 GMT
- Title: Quantum simulation using noisy unitary circuits and measurements
- Authors: Oliver Lunt, Jonas Richter, Arijeet Pal
- Abstract summary: Noisy quantum circuits have become an important cornerstone of our understanding of quantum many-body dynamics.
We give an overview of two classes of dynamics studied using random-circuit models, with a particular focus on the dynamics of quantum entanglement.
We consider random-circuit sampling experiments and discuss the usefulness of random quantum states for simulating quantum many-body dynamics on NISQ devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many-body quantum systems are notoriously hard to study theoretically due to
the exponential growth of their Hilbert space. It is also challenging to probe
the quantum correlations in many-body states in experiments due to their
sensitivity to external noise. Using synthetic quantum matter to simulate
quantum systems has opened new ways of probing quantum many-body systems with
unprecedented control, and of engineering phases of matter which are otherwise
hard to find in nature. Noisy quantum circuits have become an important
cornerstone of our understanding of quantum many-body dynamics. In particular,
random circuits act as minimally structured toy models for chaotic
nonintegrable quantum systems, faithfully reproducing some of their universal
properties. Crucially, in contrast to the full microscopic model, random
circuits can be analytically tractable under a reasonable set of assumptions,
thereby providing invaluable insights into questions which might be out of
reach even for state-of-the-art numerical techniques. Here, we give an overview
of two classes of dynamics studied using random-circuit models, with a
particular focus on the dynamics of quantum entanglement. We will especially
pay attention to potential near-term applications of random-circuit models on
noisy-intermediate scale quantum (NISQ) devices. In this context, we cover
hybrid circuits consisting of unitary gates interspersed with nonunitary
projective measurements, hosting an entanglement phase transition from a
volume-law to an area-law phase of the steady-state entanglement. Moreover, we
consider random-circuit sampling experiments and discuss the usefulness of
random quantum states for simulating quantum many-body dynamics on NISQ devices
by leveraging the concept of quantum typicality. We highlight how emergent
hydrodynamics can be studied by utilizing random quantum states generated by
chaotic circuits.
Related papers
- Dynamical simulations of many-body quantum chaos on a quantum computer [3.731709137507907]
We study a class of maximally chaotic circuits known as dual unitary circuits.
We show that a superconducting quantum processor with 91 qubits is able to accurately simulate these correlators.
We then probe dynamics beyond exact verification, by perturbing the circuits away from the dual unitary point.
arXiv Detail & Related papers (2024-11-01T17:57:13Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Analog Quantum Simulation of the Dynamics of Open Quantum Systems with
Quantum Dots and Microelectronic Circuits [0.0]
We introduce a setup for the analog quantum simulation of the dynamics of open quantum systems based on semiconductor quantum dots.
The proposal opens a general path for effective quantum dynamics simulations based on semiconductor quantum dots.
arXiv Detail & Related papers (2022-03-23T01:42:19Z) - Experimental simulation of open quantum system dynamics via
Trotterization [8.581263348642212]
We experimentally demonstrate a digital simulation of an open quantum system in a controllable Markovian environment.
By Trotterizing the quantum Liouvillians, the continuous evolution of an open quantum system is effectively realized.
High-order Trotter for open quantum dynamics is also experimentally investigated and shows higher accuracy.
arXiv Detail & Related papers (2021-08-05T06:17:26Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.