論文の概要: Cell segmentation from telecentric bright-field transmitted light
microscopic images using a Residual Attention U-Net: a case study on HeLa
line
- arxiv url: http://arxiv.org/abs/2203.12290v1
- Date: Wed, 23 Mar 2022 09:20:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-24 16:27:13.217062
- Title: Cell segmentation from telecentric bright-field transmitted light
microscopic images using a Residual Attention U-Net: a case study on HeLa
line
- Title(参考訳): Residual Attention U-Netを用いた遠心光電界透過型光顕微鏡画像からの細胞セグメンテーション:HeLa線を例として
- Authors: Ali Ghaznavi, Renata Rychtarikova, Mohammadmehdi Saberioon, Dalibor
Stys
- Abstract要約: 明視野光顕微鏡画像からのリビング細胞分画は、生体細胞の画像の複雑さと時間的変化のために困難である。
近年, 深層学習(DL)に基づく手法が, その成功と有望な成果により, 医用・顕微鏡画像分割作業で普及している。
本研究の目的は,HeLa線の生きた細胞を光電場透過顕微鏡で分断する深層学習型UNet法を開発することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Living cell segmentation from bright-field light microscopic images is
challenging due to the image complexity and temporal changes in the living
cells. Recently developed deep learning (DL)-based methods became popular in
medical and microscopic image segmentation tasks due to their success and
promising outcomes. The main objective of this paper is to develop a deep
learning, UNet-based method to segment the living cells of the HeLa line in
bright-field transmitted light microscopy. To find the most suitable
architecture for our datasets, we have proposed a residual attention U-Net and
compared it with an attention and a simple U-Net architecture. The attention
mechanism highlights the remarkable features and suppresses activations in the
irrelevant image regions. The residual mechanism overcomes with vanishing
gradient problem. The Mean-IoU score for our datasets reaches 0.9505, 0.9524,
and 0.9530 for the simple, attention, and residual attention U-Net,
respectively. We achieved the most accurate semantic segmentation results in
the Mean-IoU and Dice metrics by applying the residual and attention mechanisms
together. The watershed method applied to this best - Residual Attention -
semantic segmentation result gave the segmentation with the specific
information for each cell.
- Abstract(参考訳): 明視野光顕微鏡画像からのリビング細胞分画は、生体細胞の画像の複雑さと時間的変化のために困難である。
近年, 深層学習(DL)に基づく手法が, その成功と有望な成果により, 医用・顕微鏡画像分割作業で普及している。
本研究の目的は,HeLa線の生きた細胞を光電場透過顕微鏡に分割する深層学習型UNet法を開発することである。
データセットに最も適したアーキテクチャを見つけるため,U-Netに留意することを提案し,それを注意と単純なU-Netアーキテクチャと比較した。
注意機構は、顕著な特徴を強調し、無関係の画像領域における活性化を抑制する。
残留メカニズムは、消失する勾配問題によって克服される。
データセットの平均iouスコアはそれぞれ0.9505, 0.9524, 0.9530, 単純, 注意, 残留注意u-netである。
残差と注意機構を組み合わせることで,平均iouおよびdice指標において,最も正確な意味セグメンテーション結果を得た。
この最善の注意セグメンテーション結果に対する流域法の適用により,各セルの特定情報を用いたセグメンテーションが得られた。
関連論文リスト
- iSeg: An Iterative Refinement-based Framework for Training-free Segmentation [85.58324416386375]
本稿では,自己注意マップを用いた横断注意マップの繰り返し精錬に関する実験的検討を行った。
トレーニング不要セグメンテーションのための効果的な反復改良フレームワークiSegを提案する。
提案したiSegは,mIoUの3.8%の絶対ゲインを達成している。
論文 参考訳(メタデータ) (2024-09-05T03:07:26Z) - LAC-Net: Linear-Fusion Attention-Guided Convolutional Network for Accurate Robotic Grasping Under the Occlusion [79.22197702626542]
本稿では, 乱れ場面におけるロボットグルーピングのためのアモーダルセグメンテーションを探求する枠組みを提案する。
線形融合注意誘導畳み込みネットワーク(LAC-Net)を提案する。
その結果,本手法が最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-08-06T14:50:48Z) - Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy [14.042884268397058]
本研究は,光収差下でのセル画像のセグメンテーションモデルについて,蛍光顕微鏡と光電場顕微鏡を用いて評価する。
ネットワークヘッドの異なるOstoしきい値法やMask R-CNNなどのセグメンテーションモデルをトレーニングし,テストする。
対照的に、Cellpose 2.0は同様の条件下で複雑な細胞画像に有効であることが証明されている。
論文 参考訳(メタデータ) (2024-04-12T15:45:26Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Unsupervised Learning of Object-Centric Embeddings for Cell Instance
Segmentation in Microscopy Images [3.039768384237206]
オブジェクト中心埋め込み(OCE)を導入する。
OCEはイメージパッチを埋め込み、同じオブジェクトから取得したパッチ間のオフセットが保存される。
画像パッチ間の空間オフセットを予測する自己教師型タスクにより,OCEを学習できることを理論的に示す。
論文 参考訳(メタデータ) (2023-10-12T16:59:50Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Segmentation in large-scale cellular electron microscopy with deep
learning: A literature survey [6.144134660210243]
ディープラーニングアルゴリズムは、ピクセルレベルのラベル付けと、同じクラスの別々のインスタンスのラベル付けの両方において、印象的な結果を得た。
本稿では,これらのアルゴリズムが,EM画像中の細胞構造とサブセル構造を分割する作業にどのように適応したかを検討する。
論文 参考訳(メタデータ) (2022-06-14T20:57:49Z) - Residual Moment Loss for Medical Image Segmentation [56.72261489147506]
位置情報は,対象物体の多様体構造を捉えた深層学習モデルに有効であることが証明された。
既存のほとんどの手法は、ネットワークが学習するために、位置情報を暗黙的にエンコードする。
セグメント化対象の位置情報を明示的に埋め込むために,新しい損失関数,すなわち残差モーメント(RM)損失を提案する。
論文 参考訳(メタデータ) (2021-06-27T09:31:49Z) - Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection [6.836162272841265]
マルチタスク学習パラダイムにおけるセルセグメンテーションのための新しい教師付き手法を提案する。
ネットワークの予測効率を向上させるために、領域とセル境界検出に基づくマルチタスク損失の組み合わせを用いる。
検証セットで全体のDiceスコアが0.93であり、これは最近の教師なし手法で15.9%以上の改善であり、一般的な教師付きU-netアルゴリズムを平均5.8%以上上回っている。
論文 参考訳(メタデータ) (2020-05-19T11:31:53Z) - Cell Segmentation and Tracking using CNN-Based Distance Predictions and
a Graph-Based Matching Strategy [0.20999222360659608]
顕微鏡画像における触覚細胞のセグメンテーション法を提案する。
距離マップにインスパイアされた新しい細胞境界の表現を用いることで, 触覚細胞だけでなく, 近接細胞をトレーニングプロセスで利用することができる。
この表現は、特にアノテーションエラーに対して堅牢であり、未表現または未含の細胞型を含むトレーニングデータに含まれる顕微鏡画像のセグメンテーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2020-04-03T11:55:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。