論文の概要: Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy
- arxiv url: http://arxiv.org/abs/2404.08549v2
- Date: Mon, 26 Aug 2024 03:59:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 23:46:51.289678
- Title: Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy
- Title(参考訳): 微視的収差下における細胞分離モデルの実際的ガイドライン
- Authors: Boyuan Peng, Jiaju Chen, P. Bilha Githinji, Ijaz Gul, Qihui Ye, Minjiang Chen, Peiwu Qin, Xingru Huang, Chenggang Yan, Dongmei Yu, Jiansong Ji, Zhenglin Chen,
- Abstract要約: 本研究は,光収差下でのセル画像のセグメンテーションモデルについて,蛍光顕微鏡と光電場顕微鏡を用いて評価する。
ネットワークヘッドの異なるOstoしきい値法やMask R-CNNなどのセグメンテーションモデルをトレーニングし,テストする。
対照的に、Cellpose 2.0は同様の条件下で複雑な細胞画像に有効であることが証明されている。
- 参考スコア(独自算出の注目度): 14.042884268397058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cell segmentation is essential in biomedical research for analyzing cellular morphology and behavior. Deep learning methods, particularly convolutional neural networks (CNNs), have revolutionized cell segmentation by extracting intricate features from images. However, the robustness of these methods under microscope optical aberrations remains a critical challenge. This study evaluates cell image segmentation models under optical aberrations from fluorescence and bright field microscopy. By simulating different types of aberrations, including astigmatism, coma, spherical aberration, trefoil, and mixed aberrations, we conduct a thorough evaluation of various cell instance segmentation models using the DynamicNuclearNet (DNN) and LIVECell datasets, representing fluorescence and bright field microscopy cell datasets, respectively. We train and test several segmentation models, including the Otsu threshold method and Mask R-CNN with different network heads (FPN, C3) and backbones (ResNet, VGG, Swin Transformer), under aberrated conditions. Additionally, we provide usage recommendations for the Cellpose 2.0 Toolbox on complex cell degradation images. The results indicate that the combination of FPN and SwinS demonstrates superior robustness in handling simple cell images affected by minor aberrations. In contrast, Cellpose 2.0 proves effective for complex cell images under similar conditions. Furthermore, we innovatively propose the Point Spread Function Image Label Classification Model (PLCM). This model can quickly and accurately identify aberration types and amplitudes from PSF images, assisting researchers without optical training. Through PLCM, researchers can better apply our proposed cell segmentation guidelines.
- Abstract(参考訳): 細胞セグメンテーションは、細胞の形態や行動を分析するために、生物医学的な研究に欠かせない。
深層学習法、特に畳み込みニューラルネットワーク(CNN)は、画像から複雑な特徴を抽出することによって細胞セグメンテーションに革命をもたらした。
しかし、顕微鏡光収差下でのこれらの手法の堅牢性は依然として重要な課題である。
本研究は,光収差下でのセル画像のセグメンテーションモデルについて,蛍光顕微鏡と光電場顕微鏡を用いて評価する。
アシグマティズム,コマ,球状収差,トレホイル,混合収差などの異なる種類の収差をシミュレートすることにより,ダイナミックヌクレアネット(DNN)とLIVCellデータセットを用いて,蛍光および明るい電場顕微鏡セルデータセットを表現する様々なセルインスタンスセグメンテーションモデルを徹底的に評価する。
ネットワークヘッドの異なるMask R-CNN(FPN, C3)やバックボーン(ResNet, VGG, Swin Transformer)などのセグメンテーションモデルを,収差条件下でトレーニングし,テストする。
さらに,複雑な細胞劣化画像上でのCellpose 2.0 Toolboxの使用勧告も提供する。
その結果、FPNとSwinSの組み合わせは、小さな収差による単純な細胞像の処理において、優れた堅牢性を示すことが示唆された。
対照的に、Cellpose 2.0は同様の条件下で複雑な細胞画像に有効であることが証明されている。
さらに,PLCM(Point Spread Function Image Label Classification Model)を提案する。
このモデルは、PSF画像から収差のタイプや振幅を迅速かつ正確に識別し、光学的トレーニングなしで研究者を支援する。
PLCMにより、提案した細胞分節ガイドラインをよりよく適用できる。
関連論文リスト
- DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images [105.46086313858062]
DiffKillRは、アーチェタイプマッチングと画像登録タスクの組み合わせとして、セルアノテーションを再構成する新しいフレームワークである。
我々はDiffKillRの理論的性質について論じ、それを3つの顕微鏡タスクで検証し、既存の教師付き・半教師なし・教師なしの手法に対する利点を実証する。
論文 参考訳(メタデータ) (2024-10-04T00:38:29Z) - Multi-stream Cell Segmentation with Low-level Cues for Multi-modality
Images [66.79688768141814]
我々は,顕微鏡画像のラベル付けを行うセル分類パイプラインを開発した。
次に、分類ラベルに基づいて分類モデルを訓練する。
2種類のセグメンテーションモデルを、丸みを帯びた形状と不規則な形状のセグメンテーションセルに展開する。
論文 参考訳(メタデータ) (2023-10-22T08:11:08Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
同様のレベルの遺伝子発現を持つ顕微鏡画像の領域を検出・分類するためのディープラーニングフレームワークを提案する。
分析するデータには教師なし学習モデルが必要です。
論文 参考訳(メタデータ) (2023-04-19T13:45:28Z) - Advanced Multi-Microscopic Views Cell Semi-supervised Segmentation [0.0]
深層学習(DL)は細胞セグメンテーションタスクにおいて強力なポテンシャルを示すが、一般化が不十分である。
本稿では,Multi-Microscopic-view Cell semi-supervised (MMCS) と呼ばれる,新しい半教師付き細胞分割法を提案する。
MMCSは、マイクロスコープの異なる低ラベルの多姿勢細胞画像を用いて、細胞セグメンテーションモデルを訓練することができる。
F1スコアは0.8239であり、全てのケースのランニング時間は許容時間の範囲内である。
論文 参考訳(メタデータ) (2023-03-21T08:08:13Z) - Machine learning based lens-free imaging technique for field-portable
cytometry [0.0]
提案手法の精度は98%に向上し,多くの細胞に対して5dB以上の信号が増強された。
モデルは、数回の学習イテレーションで新しいタイプのサンプルを学ぶために適応し、新しく導入されたサンプルをうまく分類することができる。
論文 参考訳(メタデータ) (2022-03-02T07:09:29Z) - From augmented microscopy to the topological transformer: a new approach
in cell image analysis for Alzheimer's research [0.0]
細胞画像解析は、細胞機能を抑制するA$beta$タンパク質の存在を検出するために、アルツハイマーの研究において重要である。
Unetは,マルチクラスセマンティックスセグメンテーションの性能を比較することで,拡張顕微鏡に最も適していることがわかった。
我々は,Unetモデルを用いて,光電場画像中の原子核を捕捉する拡張顕微鏡法を開発し,入力画像を位相情報列に変換する。
論文 参考訳(メタデータ) (2021-08-03T16:59:33Z) - Enforcing Morphological Information in Fully Convolutional Networks to
Improve Cell Instance Segmentation in Fluorescence Microscopy Images [1.408123603417833]
本稿では,よく知られたU-Netアーキテクチャに基づく新しいセルインスタンス分割手法を提案する。
深部距離変換器(DDT)がバックボーンモデルとして機能する。
その結果,従来のU-Netアーキテクチャよりも性能が向上することが示唆された。
論文 参考訳(メタデータ) (2021-06-10T15:54:38Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
ニューラルネットワークのアンサンブルを用いて生体医用画像の分類を行う。
ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign。
論文 参考訳(メタデータ) (2020-11-24T01:53:39Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection [6.836162272841265]
マルチタスク学習パラダイムにおけるセルセグメンテーションのための新しい教師付き手法を提案する。
ネットワークの予測効率を向上させるために、領域とセル境界検出に基づくマルチタスク損失の組み合わせを用いる。
検証セットで全体のDiceスコアが0.93であり、これは最近の教師なし手法で15.9%以上の改善であり、一般的な教師付きU-netアルゴリズムを平均5.8%以上上回っている。
論文 参考訳(メタデータ) (2020-05-19T11:31:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。