論文の概要: Dynamically-Scaled Deep Canonical Correlation Analysis
- arxiv url: http://arxiv.org/abs/2203.12377v2
- Date: Thu, 24 Mar 2022 08:29:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-25 11:16:19.732989
- Title: Dynamically-Scaled Deep Canonical Correlation Analysis
- Title(参考訳): 動的スケール深部カノニカル相関解析
- Authors: Tomer Friedlander, Lior Wolf
- Abstract要約: カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
- 参考スコア(独自算出の注目度): 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Canonical Correlation Analysis (CCA) is a method for feature extraction of
two views by finding maximally correlated linear projections of them. Several
variants of CCA have been introduced in the literature, in particular, variants
based on deep neural networks for learning highly correlated nonlinear
transformations of two views. As these models are parameterized conventionally,
their learnable parameters remain independent of the inputs after the training
process, which may limit their capacity for learning highly correlated
representations. We introduce a novel dynamic scaling method for training an
input-dependent canonical correlation model. In our deep-CCA models, the
parameters of the last layer are scaled by a second neural network that is
conditioned on the model's input, resulting in a parameterization that is
dependent on the input samples. We evaluate our model on multiple datasets and
demonstrate that the learned representations are more correlated in comparison
to the conventionally-parameterized CCA-based models and also obtain preferable
retrieval results. Our code is available at
https://github.com/tomerfr/DynamicallyScaledDeepCCA.
- Abstract(参考訳): 正準相関解析(英: canonical correlation analysis、cca)は、それらの最大相関線形射影を見つけることにより、2つの視点の特徴抽出法である。
CCAのいくつかの変種は、特に2つのビューの高相関性非線形変換を学習するためのディープニューラルネットワークに基づく変種である。
これらのモデルが従来よりパラメータ化されているため、学習可能なパラメータはトレーニングプロセス後に入力から独立している。
入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
深いccaモデルでは、最終層のパラメータはモデルの入力に基づいて条件づけされた第2のニューラルネットワークによってスケールされ、その結果、入力サンプルに依存するパラメータ化が行われる。
提案手法を複数のデータセット上で評価し,従来のパラメータ化CCAモデルと比較して学習結果がより相関していることを示す。
私たちのコードはhttps://github.com/tomerfr/DynamicallyScaledDeepCCAで利用可能です。
関連論文リスト
- Variational autoencoder-based neural network model compression [4.992476489874941]
変分オートエンコーダ(VAE)は、深部生成モデルの一種であり、近年広く使われている。
本稿では,VAEに基づくニューラルネットワークモデル圧縮手法について検討する。
論文 参考訳(メタデータ) (2024-08-25T09:06:22Z) - Harmony in Diversity: Merging Neural Networks with Canonical Correlation Analysis [17.989809995141044]
相関解析に基づくCCAマージを提案する。
2モデル以上のモデルがマージされた場合、CCAは過去の方法よりもはるかにうまく機能することを示す。
論文 参考訳(メタデータ) (2024-07-07T14:21:04Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Phantom Embeddings: Using Embedding Space for Model Regularization in
Deep Neural Networks [12.293294756969477]
機械学習モデルの強みは、データから複雑な関数近似を学ぶ能力に起因している。
複雑なモデルはトレーニングデータを記憶する傾向があり、結果としてテストデータの正規化性能が低下する。
情報豊富な潜伏埋め込みと高いクラス内相関を利用してモデルを正規化するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-04-14T17:15:54Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
特異モデルからサブモデルを抽出する手法を提案する。
本手法はトレーニング中のモデルの識別性を強制する。
この手法がディープニューラルネットワークのようなより複雑なモデルにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2022-06-17T07:50:22Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
我々は、ニューラルネットワーク(NN)モデルの一般化精度を予測するために、コンテストで公に利用可能にされたモデルのコーパスを分析する。
メトリクスが全体としてよく機能するが、データのサブパーティションではあまり機能しない。
本稿では,データに依存しない2つの新しい形状指標と,一連のNNのテスト精度の傾向を予測できるデータ依存指標を提案する。
論文 参考訳(メタデータ) (2021-06-01T19:19:49Z) - $\ell_0$-based Sparse Canonical Correlation Analysis [7.073210405344709]
正準相関解析(CCA)モデルは、2つの変数の集合間の関連を研究する上で強力である。
その成功にもかかわらず、CCAモデルは、いずれかのモダリティにおける変数数がサンプル数を超えた場合、壊れる可能性がある。
本稿では,2つのモードのスパース部分集合に基づく相関表現の学習法である $ell_0$-CCA を提案する。
論文 参考訳(メタデータ) (2020-10-12T11:44:15Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。