論文の概要: Variational autoencoder-based neural network model compression
- arxiv url: http://arxiv.org/abs/2408.14513v1
- Date: Sun, 25 Aug 2024 09:06:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 18:01:37.404300
- Title: Variational autoencoder-based neural network model compression
- Title(参考訳): 変分自己エンコーダに基づくニューラルネットワークモデル圧縮
- Authors: Liang Cheng, Peiyuan Guan, Amir Taherkordi, Lei Liu, Dapeng Lan,
- Abstract要約: 変分オートエンコーダ(VAE)は、深部生成モデルの一種であり、近年広く使われている。
本稿では,VAEに基づくニューラルネットワークモデル圧縮手法について検討する。
- 参考スコア(独自算出の注目度): 4.992476489874941
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational Autoencoders (VAEs), as a form of deep generative model, have been widely used in recent years, and shown great great peformance in a number of different domains, including image generation and anomaly detection, etc.. This paper aims to explore neural network model compression method based on VAE. The experiment uses different neural network models for MNIST recognition as compression targets, including Feedforward Neural Network (FNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM). These models are the most basic models in deep learning, and other more complex and advanced models are based on them or inherit their features and evolve. In the experiment, the first step is to train the models mentioned above, each trained model will have different accuracy and number of total parameters. And then the variants of parameters for each model are processed as training data in VAEs separately, and the trained VAEs are tested by the true model parameters. The experimental results show that using the latent space as a representation of the model compression can improve the compression rate compared to some traditional methods such as pruning and quantization, meanwhile the accuracy is not greatly affected using the model parameters reconstructed based on the latent space. In the future, a variety of different large-scale deep learning models will be used more widely, so exploring different ways to save time and space on saving or transferring models will become necessary, and the use of VAE in this paper can provide a basis for these further explorations.
- Abstract(参考訳): 近年, 画像生成や異常検出など, 様々な領域において, 可変オートエンコーダ (VAE) が広く用いられている。
本稿では,VAEに基づくニューラルネットワークモデル圧縮手法について検討する。
この実験では、Feedforward Neural Network(FNN)、Convolutional Neural Network(CNN)、Recurrent Neural Network(RNN)、Long Short-Term Memory(LSTM)など、MNISTを圧縮ターゲットとして認識するためのさまざまなニューラルネットワークモデルを使用している。
これらのモデルはディープラーニングにおける最も基本的なモデルであり、他のより複雑で高度なモデルはそれらをベースとするか、機能を継承して進化させる。
実験では、まず上記のモデルをトレーニングし、トレーニングされた各モデルが異なる精度と総パラメータの数を持つようにする。
そして、各モデルのパラメータの変種をVAEのトレーニングデータとして別々に処理し、トレーニングされたVAEを真のモデルパラメータでテストする。
実験の結果, モデル圧縮の表現として潜時空間を用いることで, プルーニングや量子化といった従来の手法と比較して圧縮率を向上できることがわかった。
将来的には、様々な大規模ディープラーニングモデルがより広く使われるようになるので、モデル保存や転送において時間と空間を節約するための様々な方法を探究する必要がある。
関連論文リスト
- BEND: Bagging Deep Learning Training Based on Efficient Neural Network Diffusion [56.9358325168226]
BEND(Efficient Neural Network Diffusion)に基づくバッグング深層学習学習アルゴリズムを提案する。
我々のアプローチは単純だが効果的であり、まず複数のトレーニングされたモデルの重みとバイアスを入力として、オートエンコーダと潜伏拡散モデルを訓練する。
提案したBENDアルゴリズムは,元のトレーニングモデルと拡散モデルの両方の平均および中央値の精度を一貫して向上させることができる。
論文 参考訳(メタデータ) (2024-03-23T08:40:38Z) - Optimizing Dense Feed-Forward Neural Networks [0.0]
本稿では,プルーニングと移動学習に基づくフィードフォワードニューラルネットワークの構築手法を提案する。
提案手法では,パラメータ数を70%以上圧縮できる。
また、ニューラルネットワークをスクラッチからトレーニングしたモデルと元のモデルを比較し、トランスファー学習レベルを評価した。
論文 参考訳(メタデータ) (2023-12-16T23:23:16Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
本稿では,属性の全体的推定に使用できるニューラルネットワーク表現モデルを提案する。
実験の結果,提案するフレームワークは,セルアーキテクチャとディープニューラルネットワーク全体の遅延特性と精度特性を予測できることがわかった。
論文 参考訳(メタデータ) (2022-11-15T10:15:21Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
本研究は,空間的次元と時間的次元に細かな注意を払っている新しいスケルトンに基づく人間行動認識モデルを提案する。
実験により、トレーニング可能なパラメータをはるかに少なくし、トレーニングや推論の高速化を図りながら、モデルが同等のパフォーマンスを達成できることが示されている。
論文 参考訳(メタデータ) (2021-07-15T02:53:11Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。