論文の概要: Random Forest Regression for continuous affect using Facial Action Units
- arxiv url: http://arxiv.org/abs/2203.12818v1
- Date: Thu, 24 Mar 2022 02:41:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-25 12:39:07.406156
- Title: Random Forest Regression for continuous affect using Facial Action Units
- Title(参考訳): 顔行動単位を用いた連続的影響に対するランダムフォレスト回帰
- Authors: Saurabh Hinduja and Shaun Canavan and Liza Jivnani and Sk Rahatul
Jannat and V Sri Chakra Kumar
- Abstract要約: 我々は第3回ワークショップ・コンペティション・オブ・エフェクティブ・ビヘイビア・アナリティクス・イン・ザ・ワイルド(ABAW)へのアプローチについて述べる。
OpenFaceを用いて顔の特徴を抽出し,複数出力のランダムフォレスト回帰器を訓練した。
- 参考スコア(独自算出の注目度): 0.3359875577705538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we describe our approach to the arousal and valence track of
the 3rd Workshop and Competition on Affective Behavior Analysis in-the-wild
(ABAW). We extracted facial features using OpenFace and used them to train a
multiple output random forest regressor. Our approach performed comparable to
the baseline approach.
- Abstract(参考訳): 本稿では,第3回ワークショップの覚醒とヴァレンストラックへのアプローチと,愛着的行動分析(abaw)に関するコンペについて述べる。
OpenFaceを用いて顔の特徴を抽出し,複数出力のランダムフォレスト回帰器を訓練した。
我々のアプローチはベースラインアプローチに匹敵する性能を示した。
関連論文リスト
- RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
マルチビュー画像を用いた3次元シーンの占有状況とセマンティクスを推定することを目的とした,新たな課題である3D占有予測手法を提案する。
本稿では,RandOccを提案する。Rendering Assisted distillation paradigm for 3D Occupancy prediction。
論文 参考訳(メタデータ) (2023-12-19T03:39:56Z) - Contrastive Pseudo Learning for Open-World DeepFake Attribution [67.58954345538547]
オープンワールド・ディープフェイク (OW-DFA) と呼ばれる新しいベンチマークを導入する。
OW-DFAタスクにおけるコントラスト擬似学習(Contrastive Pseudo Learning, CPL)と呼ばれる新しいフレームワークを提案する。1)グローバル・ローカル投票モジュールを導入し、異なる操作領域の偽顔の特徴的アライメントを誘導し、2)信頼に基づくソフト擬似ラベル戦略を設計し、類似の手法による非ラベル集合における擬似雑音の軽減を図る。
論文 参考訳(メタデータ) (2023-09-20T08:29:22Z) - Diffusion Action Segmentation [63.061058214427085]
本稿では,このような反復的洗練の本質的な精神を共用した拡散モデルによる新しい枠組みを提案する。
このフレームワークでは、入力された映像の特徴を条件としてランダムノイズから行動予測を反復的に生成する。
論文 参考訳(メタデータ) (2023-03-31T10:53:24Z) - EmotiEffNet Facial Features in Uni-task Emotion Recognition in Video at
ABAW-5 competition [7.056222499095849]
第5回ABAW(Affective Behavior Analysis in-the-Wild)コンペティションの結果を報告する。
The use of the pre-trained convolutional network from the EmotiEffNet family for frame-level feature extract。
論文 参考訳(メタデータ) (2023-03-16T08:57:33Z) - Neighborhood Mixup Experience Replay: Local Convex Interpolation for
Improved Sample Efficiency in Continuous Control Tasks [60.88792564390274]
Neighborhood Mixup Experience Replay (NMER) は、状態-作用空間における遷移を補間する幾何学的に接地されたリプレイバッファである。
NMERは,ベースライン再生バッファ上で平均94%(TD3)と29%(SAC)のサンプリング効率を向上する。
論文 参考訳(メタデータ) (2022-05-18T02:44:08Z) - FSGANv2: Improved Subject Agnostic Face Swapping and Reenactment [28.83743270895698]
顔交換と再現のためにFSGAN(Face Swapping GAN)を提案する。
従来とは違って,顔のトレーニングを必要とせず,顔のペアに適用可能な被験者交換方式を提案する。
顔の表情や表情の変化を調整し、単一の画像やビデオシーケンスに適用できる、新しい反復的深層学習に基づく顔の再現手法を導出する。
映像系列に対しては,再現性,デラウネー三角測量,バリ座標に基づく連続的な顔ビューの認識を導入し,顔領域をフェースコンプリートネットワークで処理する。
論文 参考訳(メタデータ) (2022-02-25T21:04:39Z) - Pose Guided Person Image Generation with Hidden p-Norm Regression [113.41144529452663]
ポーズ誘導者画像生成タスクを解くための新しいアプローチを提案する。
提案手法では,各アイデンティティに対するポーズ不変特徴行列を推定し,対象ポーズに条件づけられたターゲットの出現を予測できる。
提案手法は, 上記すべての変種シナリオにおいて, 競合性能を示す。
論文 参考訳(メタデータ) (2021-02-19T17:03:54Z) - Two-Stream Aural-Visual Affect Analysis in the Wild [2.578242050187029]
本稿では,ABAW(Affective Behavior Analysis in-the-wild)2020コンペティションについて紹介する。
本稿では,映像から感情行動を認識するための2ストリーム聴覚・視覚分析モデルを提案する。
我々のモデルは、挑戦的なAff-Wild2データベース上で有望な結果を得る。
論文 参考訳(メタデータ) (2020-02-09T16:59:56Z) - $M^3$T: Multi-Modal Continuous Valence-Arousal Estimation in the Wild [86.40973759048957]
本報告では、ABAW(Affective Behavior Analysis in-the-wild)チャレンジの価-覚醒的評価トラックへの提案に基づくマルチモーダルマルチタスク(M3$T)アプローチについて述べる。
提案したM3$Tフレームワークでは,ビデオの視覚的特徴とオーディオトラックの音響的特徴の両方を融合させて,有声度と覚醒度を推定する。
ABAW が提供する検証セットに対して,M3$T フレームワークを評価し,ベースライン法を著しく上回る性能を示した。
論文 参考訳(メタデータ) (2020-02-07T18:53:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。