論文の概要: Privileged Attribution Constrained Deep Networks for Facial Expression
Recognition
- arxiv url: http://arxiv.org/abs/2203.12905v1
- Date: Thu, 24 Mar 2022 07:49:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-25 22:33:01.767977
- Title: Privileged Attribution Constrained Deep Networks for Facial Expression
Recognition
- Title(参考訳): 表情認識のための特権的帰属制限付きディープネットワーク
- Authors: Jules Bonnard, Arnaud Dapogny, Ferdinand Dhombres and K\'evin Bailly
- Abstract要約: 顔の表情認識(FER)は、機械が人間の振る舞いをよりよく理解できるようにするため、多くの研究領域において重要である。
これらの問題を緩和するために、私たちはモデルに、目、口、まぶたなどの特定の顔領域に集中するよう指導する。
PAL(Privleged Attribution Loss)は,最も健康な顔領域に向けて,モデルの注意を向ける手法である。
- 参考スコア(独自算出の注目度): 31.98044070620145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Facial Expression Recognition (FER) is crucial in many research domains
because it enables machines to better understand human behaviours. FER methods
face the problems of relatively small datasets and noisy data that don't allow
classical networks to generalize well. To alleviate these issues, we guide the
model to concentrate on specific facial areas like the eyes, the mouth or the
eyebrows, which we argue are decisive to recognise facial expressions. We
propose the Privileged Attribution Loss (PAL), a method that directs the
attention of the model towards the most salient facial regions by encouraging
its attribution maps to correspond to a heatmap formed by facial landmarks.
Furthermore, we introduce several channel strategies that allow the model to
have more degrees of freedom. The proposed method is independent of the
backbone architecture and doesn't need additional semantic information at test
time. Finally, experimental results show that the proposed PAL method
outperforms current state-of-the-art methods on both RAF-DB and AffectNet.
- Abstract(参考訳): 顔の表情認識(FER)は、機械が人間の振る舞いをよりよく理解できるようにするため、多くの研究領域において重要である。
FERメソッドは、古典的なネットワークをうまく一般化できない比較的小さなデータセットとノイズの多いデータの問題に直面します。
これらの問題を緩和するために、私たちはモデルに、顔の表情を認識することが決定的であるとして、目、口、額などの特定の顔面領域に集中するよう指導する。
PAL(Privleged Attribution Loss)は、顔のランドマークによって形成されたヒートマップに対応するように、その属性マップを奨励することにより、モデルが最も健康な顔領域に注意を向ける手法である。
さらに,モデルの自由度を高めるためのいくつかのチャネル戦略を導入する。
提案手法はバックボーンアーキテクチャとは独立しており,テスト時に追加のセマンティック情報を必要としない。
最後に,提案手法はRAF-DBとAffectNetの両方で最先端の手法よりも優れていることを示す。
関連論文リスト
- CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
本稿では、顔エンコーダの最後の層に異なるデータセットの特定の感情特性を適応させるメカニズムであるContrastive Inhibitory Adaptati On(CIAO)を提案する。
CIAOは、非常にユニークな感情表現を持つ6つの異なるデータセットに対して、表情認識性能が改善されている。
論文 参考訳(メタデータ) (2022-08-10T15:46:05Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
放射状基底関数(RBF)ユニットによって形成された複数の分岐で拡張されたCNNベースのアーキテクチャを提案する。
RBFユニットは、中間表現を用いて類似のインスタンスで共有される局所パターンをキャプチャする。
提案手法は,提案手法の競争力を高めるためのローカル情報の導入であることを示す。
論文 参考訳(メタデータ) (2021-09-07T21:05:56Z) - Progressive Spatio-Temporal Bilinear Network with Monte Carlo Dropout
for Landmark-based Facial Expression Recognition with Uncertainty Estimation [93.73198973454944]
提案手法の性能は, 広く使用されている3つのデータセットで評価される。
ビデオベースの最先端の手法に匹敵するが、複雑さははるかに少ない。
論文 参考訳(メタデータ) (2021-06-08T13:40:30Z) - Exploiting Emotional Dependencies with Graph Convolutional Networks for
Facial Expression Recognition [31.40575057347465]
本稿では,視覚における表情認識のためのマルチタスク学習フレームワークを提案する。
MTL設定において、離散認識と連続認識の両方のために共有特徴表現が学習される。
実験の結果,本手法は離散FER上での最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2021-06-07T10:20:05Z) - A Multi-resolution Approach to Expression Recognition in the Wild [9.118706387430883]
顔認識タスクを解決するためのマルチリゾリューション手法を提案する。
私たちは、しばしば異なる解像度で画像が取得されるという観察を直感的に根拠としています。
我々は、Affect-in-the-Wild 2データセットに基づいてトレーニングされたSqueeze-and-Excitationブロックを備えたResNetのようなアーキテクチャを使用する。
論文 参考訳(メタデータ) (2021-03-09T21:21:02Z) - The FaceChannel: A Fast & Furious Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
顔の表情の自動認識(FER)の最先端モデルは、非常に深いニューラルネットワークに基づいており、訓練には効果的だがかなり高価である。
私たちは、一般的なディープニューラルネットワークよりもはるかに少ないパラメータを持つ軽量ニューラルネットワークであるFaceChannelを形式化します。
我々は、私たちのモデルがFERの現在の最先端技術に匹敵するパフォーマンスを達成する方法を実証する。
論文 参考訳(メタデータ) (2020-09-15T09:25:37Z) - InterFaceGAN: Interpreting the Disentangled Face Representation Learned
by GANs [73.27299786083424]
我々は、最先端のGANモデルによって学習された不整合顔表現を解釈するInterFaceGANというフレームワークを提案する。
まず、GANは潜在空間の線型部分空間で様々な意味学を学ぶ。
次に、異なる意味論間の相関関係について詳細な研究を行い、部分空間射影を通してそれらをよりよく解離させる。
論文 参考訳(メタデータ) (2020-05-18T18:01:22Z) - Deep Multi-Facial Patches Aggregation Network For Facial Expression
Recognition [5.735035463793008]
深層多面的パッチアグリゲーションネットワークに基づく顔表情認識(FER)のアプローチを提案する。
ディープ機能は、ディープサブネットワークを使用して顔のパッチから学習され、表現分類のために1つのディープアーキテクチャに集約される。
論文 参考訳(メタデータ) (2020-02-20T17:57:06Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
顔表情の合成と認識を効果的に行うための新しい統合深層学習法を提案する。
提案手法は, 2段階の学習手順を伴い, まず, 表情の異なる顔画像を生成するために, 表情合成生成対向ネットワーク (FESGAN) を事前訓練する。
実画像と合成画像間のデータバイアスの問題を軽減するために,新しい実データ誘導バックプロパゲーション(RDBP)アルゴリズムを用いたクラス内損失を提案する。
論文 参考訳(メタデータ) (2020-02-06T10:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。