論文の概要: Focus-and-Detect: A Small Object Detection Framework for Aerial Images
- arxiv url: http://arxiv.org/abs/2203.12976v1
- Date: Thu, 24 Mar 2022 10:43:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-25 12:38:59.958372
- Title: Focus-and-Detect: A Small Object Detection Framework for Aerial Images
- Title(参考訳): Focus-and-Detect: 空中画像のための小さな物体検出フレームワーク
- Authors: Onur Can Koyun, Reyhan Kevser Keser, \.Ibrahim Batuhan Akkaya,
Beh\c{c}et U\u{g}ur T\"oreyin
- Abstract要約: 我々はFocus-and-Detectと呼ばれる2段階のオブジェクト検出フレームワークを提案する。
第1段階は、焦点領域を構成するオブジェクトのクラスタを生成する。
第2段階は対象検出器ネットワークであり、焦点領域内の物体を予測する。
提案した2段階のフレームワークは,VisDrone検証データセットのAPスコアが42.06であることを示す。
- 参考スコア(独自算出の注目度): 1.911678487931003
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite recent advances, object detection in aerial images is still a
challenging task. Specific problems in aerial images makes the detection
problem harder, such as small objects, densely packed objects, objects in
different sizes and with different orientations. To address small object
detection problem, we propose a two-stage object detection framework called
"Focus-and-Detect". The first stage which consists of an object detector
network supervised by a Gaussian Mixture Model, generates clusters of objects
constituting the focused regions. The second stage, which is also an object
detector network, predicts objects within the focal regions. Incomplete Box
Suppression (IBS) method is also proposed to overcome the truncation effect of
region search approach. Results indicate that the proposed two-stage framework
achieves an AP score of 42.06 on VisDrone validation dataset, surpassing all
other state-of-the-art small object detection methods reported in the
literature, to the best of authors' knowledge.
- Abstract(参考訳): 近年の進歩にもかかわらず、空中画像における物体検出は依然として困難な課題である。
空中画像の特定の問題は、小さな物体、密集した物体、異なる大きさの物体、異なる向きの物体などの検出問題を難しくする。
小型オブジェクト検出問題に対処するため,Focus-and-Detectと呼ばれる2段階オブジェクト検出フレームワークを提案する。
ガウス混合モデルによって監視される物体検出ネットワークからなる第一段階は、集束領域を構成する物体のクラスターを生成する。
第2段階は、同じく物体検出器ネットワークであり、焦点領域内の物体を予測する。
Incomplete Box Suppression (IBS) 法も提案され, 地域探索手法のトランケーション効果を克服した。
その結果、2段階のフレームワークはVisDrone検証データセット上で42.06のAPスコアを達成し、文献で報告されている他の最先端の小さなオブジェクト検出手法を最大限に活用した。
関連論文リスト
- Visible and Clear: Finding Tiny Objects in Difference Map [50.54061010335082]
本稿では,検出モデルに自己再構成機構を導入し,それと微小物体との強い相関関係を明らかにする。
具体的には、再構成画像と入力の差分マップを構築して、検出器の首の内側に再構成ヘッドを配置し、小さな物体に対して高い感度を示す。
さらに、小さな特徴表現をより明確にするために、差分マップガイド機能拡張(DGFE)モジュールを開発する。
論文 参考訳(メタデータ) (2024-05-18T12:22:26Z) - YOLC: You Only Look Clusters for Tiny Object Detection in Aerial Images [33.80392696735718]
YOLC(You Only Look Clusters)は、アンカーフリーなオブジェクト検出器であるCenterNet上に構築された、効率的で効果的なフレームワークである。
大規模画像や非一様オブジェクトの分布がもたらす課題を克服するため,正確な検出のためにクラスタ領域のズームインを適応的に検索するローカルスケールモジュール(LSM)を導入する。
Visdrone 2019 と UAVDT を含む2つの航空画像データセットに対する広範な実験を行い、提案手法の有効性と優位性を実証した。
論文 参考訳(メタデータ) (2024-04-09T10:03:44Z) - Improving the Detection of Small Oriented Objects in Aerial Images [0.0]
本研究では,オブジェクト指向物体検出モデルの分類・回帰タスクを強化することにより,空中画像中の小型物体を高精度に検出する手法を提案する。
ガイド・アテンション・ロス(GALoss)とボックス・ポイント・ロス(BPLoss)の2つの損失からなるアテンション・ポイント・ネットワークを設計した。
実験結果から,小型オブジェクトインスタンスを用いた標準指向型空中データセットにおける注意点ネットワークの有効性が示された。
論文 参考訳(メタデータ) (2024-01-12T11:00:07Z) - A Coarse to Fine Framework for Object Detection in High Resolution Image [8.316322664637537]
オブジェクト検出の現在のアプローチでは、高解像度画像における小さなオブジェクトや大規模な分散問題を検出することはめったにない。
本稿では,オブジェクト検出の精度を,特に小さなオブジェクトや大規模分散シーンに対して向上させる,シンプルで効率的なアプローチを提案する。
提案手法は,高分解能画像における物体の空間と情報を有効利用することにより,より効率的に検出できる。
論文 参考訳(メタデータ) (2023-03-02T13:04:33Z) - Decoupled Adaptation for Cross-Domain Object Detection [69.5852335091519]
クロスドメインオブジェクト検出は、オブジェクト分類よりも難しい。
D-adaptは4つのクロスドメインオブジェクト検出タスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2021-10-06T08:43:59Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-netは、新しい低計算の2段階オブジェクト検出アーキテクチャである。
非常にエレガントな第1ステージを使用して、オブジェクトをバックグラウンドから分離することで、計算を削減します。
結果のイメージ提案は、高度に正確なモデルによって第2段階で処理される。
論文 参考訳(メタデータ) (2021-07-21T12:39:51Z) - Ensembling object detectors for image and video data analysis [98.26061123111647]
本稿では,複数の物体検出器の出力をアンサンブルすることで,画像データ上の境界ボックスの検出性能と精度を向上させる手法を提案する。
本研究では,2段階追跡に基づく検出精度向上手法を提案することで,映像データに拡張する。
論文 参考訳(メタデータ) (2021-02-09T12:38:16Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z) - Few-shot Object Detection with Self-adaptive Attention Network for
Remote Sensing Images [11.938537194408669]
本報告では, ごく一部の例で提供される新しい物体を検出するために設計された, 数発の物体検出器を提案する。
対象物検出設定に適合するため,本提案では,全画像ではなく対象物レベルの関係に焦点を合わせている。
本実験は, 撮影シーンにおける提案手法の有効性を実証するものである。
論文 参考訳(メタデータ) (2020-09-26T13:44:58Z) - SCRDet++: Detecting Small, Cluttered and Rotated Objects via
Instance-Level Feature Denoising and Rotation Loss Smoothing [131.04304632759033]
小さくて散らばった物体は実世界では一般的であり、検出は困難である。
本稿では,まず,物体検出にデノナイズするアイデアを革新的に紹介する。
機能マップ上のインスタンスレベルの記述は、小さくて散らばったオブジェクトの検出を強化するために行われる。
論文 参考訳(メタデータ) (2020-04-28T06:03:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。