論文の概要: A Simulation Benchmark for Vision-based Autonomous Navigation
- arxiv url: http://arxiv.org/abs/2203.13048v1
- Date: Thu, 24 Mar 2022 12:51:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-25 18:14:59.632195
- Title: A Simulation Benchmark for Vision-based Autonomous Navigation
- Title(参考訳): 視覚に基づく自律ナビゲーションのためのシミュレーションベンチマーク
- Authors: Lauri Suomela, Atakan Dag, Harry Edelman, Joni-Kristian
K\"am\"ar\"ainen
- Abstract要約: この研究は、視覚に基づく自律ナビゲーションのためのシミュレーターベンチマークを導入する。
ベンチマークには、完全な自律的なビジュアルナビゲーションスタックのさまざまなコンポーネントのモジュール化された統合が含まれている。
- 参考スコア(独自算出の注目度): 3.141160852597485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces a simulator benchmark for vision-based autonomous
navigation. The simulator offers control over real world variables such as the
environment, time of day, weather and traffic. The benchmark includes a modular
integration of different components of a full autonomous visual navigation
stack. In the experimental part of the paper, state-of-the-art visual
localization methods are evaluated as a part of the stack in realistic
navigation tasks. To the authors' best knowledge, the proposed benchmark is the
first to study modern visual localization methods as part of a full autonomous
visual navigation stack.
- Abstract(参考訳): 本研究は,視覚に基づく自律ナビゲーションのためのシミュレータベンチマークを紹介する。
シミュレータは、環境、時間帯、天気、交通といった現実世界の変数の制御を提供する。
ベンチマークには、完全な自律的なビジュアルナビゲーションスタックのさまざまなコンポーネントのモジュール化が含まれている。
実験では,実際のナビゲーションタスクにおいて,最先端のビジュアルローカライズ手法をスタックの一部として評価した。
著者らの知る限り、提案ベンチマークは、完全自律視覚ナビゲーションスタックの一部として、近代的な視覚的位置決め手法を初めて研究したものである。
関連論文リスト
- Vision-Based Autonomous Navigation for Unmanned Surface Vessel in
Extreme Marine Conditions [2.8983738640808645]
本稿では,極端海洋環境下での目標物追跡のための自律的視覚に基づくナビゲーション・フレームワークを提案する。
提案手法は砂嵐や霧による可視性低下下でのシミュレーションで徹底的に検証されている。
結果は、ベンチマークしたMBZIRCシミュレーションデータセット全体にわたる最先端のデハージング手法と比較される。
論文 参考訳(メタデータ) (2023-08-08T14:25:13Z) - Learning Navigational Visual Representations with Semantic Map
Supervision [85.91625020847358]
エージェントの自我中心のビューとセマンティックマップを対比してナビゲーション固有の視覚表現学習法を提案する。
Ego$2$-Map学習は、オブジェクト、構造、遷移などのコンパクトでリッチな情報を、ナビゲーションのためのエージェントのエゴセントリックな表現に転送する。
論文 参考訳(メタデータ) (2023-07-23T14:01:05Z) - CorNav: Autonomous Agent with Self-Corrected Planning for Zero-Shot Vision-and-Language Navigation [73.78984332354636]
CorNavは視覚・言語ナビゲーションのための新しいゼロショットフレームワークである。
将来の計画の見直しや行動調整のための環境フィードバックが組み込まれている。
ゼロショットマルチタスク設定ですべてのベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2023-06-17T11:44:04Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Virtual Guidance as a Mid-level Representation for Navigation [8.712750753534532]
仮想誘導」は視覚的でない命令信号を視覚的に表現するように設計されている。
シミュレーションと実世界の両方の環境で実験を行い,提案手法の評価を行った。
論文 参考訳(メタデータ) (2023-03-05T17:55:15Z) - Navigating to Objects in the Real World [76.1517654037993]
本稿では,古典的,モジュール的,エンド・ツー・エンドの学習手法と比較した,意味的視覚ナビゲーション手法に関する大規模な実証的研究について述べる。
モジュラー学習は実世界ではうまく機能し、90%の成功率に達しています。
対照的に、エンド・ツー・エンドの学習は、シミュレーションと現実の間の画像領域の差が大きいため、77%のシミュレーションから23%の実際の成功率へと低下する。
論文 参考訳(メタデータ) (2022-12-02T01:10:47Z) - Image-based Navigation in Real-World Environments via Multiple Mid-level
Representations: Fusion Models, Benchmark and Efficient Evaluation [13.207579081178716]
近年の学習に基づくナビゲーション手法では,エージェントのシーン理解とナビゲーション能力が同時に実現されている。
残念ながら、シミュレーターがナビゲーションポリシーを訓練する効率的なツールであるとしても、現実の世界に移動すると、結果のモデルは失敗することが多い。
可能な解決策の1つは、シーンの重要なドメイン不変性を含む中間レベルの視覚表現を備えたナビゲーションモデルを提供することである。
論文 参考訳(メタデータ) (2022-02-02T15:00:44Z) - DriveGAN: Towards a Controllable High-Quality Neural Simulation [147.6822288981004]
DriveGANと呼ばれる新しい高品質のニューラルシミュレータを紹介します。
DriveGANは、異なるコンポーネントを監督なしで切り離すことによって制御性を達成する。
実世界の運転データ160時間を含む複数のデータセットでdriveganをトレーニングします。
論文 参考訳(メタデータ) (2021-04-30T15:30:05Z) - Unsupervised Domain Adaptation for Visual Navigation [115.85181329193092]
視覚ナビゲーションのための教師なし領域適応手法を提案する。
本手法では,対象領域の画像をソース領域に変換し,ナビゲーションポリシで学習した表現と一致するようにする。
論文 参考訳(メタデータ) (2020-10-27T18:22:43Z) - On Embodied Visual Navigation in Real Environments Through Habitat [20.630139085937586]
ディープラーニングに基づくビジュアルナビゲーションモデルは、大量の視覚的観察に基づいてトレーニングされた場合、効果的なポリシーを学ぶことができる。
この制限に対処するため、仮想環境における視覚ナビゲーションポリシーを効率的に訓練するためのシミュレーションプラットフォームがいくつか提案されている。
本研究では,実世界の航法ピソードを走らせることなく,実世界の観測における航法方針の訓練と評価を効果的に行うことができることを示す。
論文 参考訳(メタデータ) (2020-10-26T09:19:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。