論文の概要: Interpretation of Chest x-rays affected by bullets using deep transfer
learning
- arxiv url: http://arxiv.org/abs/2203.13461v1
- Date: Fri, 25 Mar 2022 05:53:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-28 21:46:07.233333
- Title: Interpretation of Chest x-rays affected by bullets using deep transfer
learning
- Title(参考訳): 深層移動学習を用いた弾丸による胸部X線の解釈
- Authors: Shaheer Khan, Azib Farooq, Israr Khan, Muhammad Gulraiz Khan, Abdul
Razzaq
- Abstract要約: 放射線学における深層学習は、異なる疾患を分類し、検出し、分類する機会を提供する。
提案した研究では,X線を銃弾の影響を受け,局所的に分類する医療画像の非自明な側面について検討した。
深層学習を用いた弾による放射線画像の検出と分類に関する最初の研究である。
- 参考スコア(独自算出の注目度): 0.8189696720657246
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The potential of deep learning, especially in medical imaging, initiated
astonishing results and improved the methodologies after every passing day.
Deep learning in radiology provides the opportunity to classify, detect and
segment different diseases automatically. In the proposed study, we worked on a
non-trivial aspect of medical imaging where we classified and localized the
X-Rays affected by bullets. We tested Images on different classification and
localization models to get considerable accuracy. The replicated data set used
in the study was replicated on different images of chest X-Rays. The proposed
model worked not only on chest radiographs but other body organs X-rays like
leg, abdomen, head, even the training dataset based on chest radiographs.
Custom models have been used for classification and localization purposes after
tuning parameters. Finally, the results of our findings manifested using
different frameworks. This might assist the research enlightening towards this
field. To the best of our knowledge, this is the first study on the detection
and classification of radiographs affected by bullets using deep learning.
- Abstract(参考訳): 深層学習の可能性は、特に医用イメージングにおいて驚くべき結果をもたらし、毎日の経過後にその方法論を改善した。
放射線学における深層学習は、異なる疾患を分類、検出、分離する機会を提供する。
提案した研究では,X線を銃弾の影響を受け,局所的に分類する医療画像の非自明な側面について検討した。
異なる分類モデルとローカライゼーションモデルを用いて画像の精度を検証した。
胸部X線の異なる画像に再現されたデータセットを再現した。
提案モデルは胸部x線写真だけでなく、脚、腹部、頭、胸部x線写真に基づくトレーニングデータセットなど他の臓器x線でも動作した。
カスタムモデルは、チューニングパラメータの後に分類とローカライゼーションの目的で使われてきた。
その結果,異なるフレームワークを用いた結果が得られた。
これはこの分野への啓蒙研究に役立つかもしれない。
我々の知る限りでは、深層学習を用いた弾丸による放射線写真の検出と分類に関する最初の研究である。
関連論文リスト
- LeDNet: Localization-enabled Deep Neural Network for Multi-Label Radiography Image Classification [0.1227734309612871]
マルチラベルラジオグラフィー画像分類は、長い間ニューラルネットワーク研究における関心のトピックであった。
胸部X線画像を用いて胸部疾患を診断する。
胸部疾患を高精度に予測するために,LDNetと呼ばれる局所化アルゴリズムと深層学習アルゴリズムの組み合わせを提案する。
論文 参考訳(メタデータ) (2024-07-04T13:46:30Z) - Act Like a Radiologist: Radiology Report Generation across Anatomical Regions [50.13206214694885]
X-RGenは6つの解剖学的領域にわたる放射線学者によるレポート生成フレームワークである。
X-RGenでは、ヒトの放射線学者の行動を模倣し、これらを4つの主要な段階に分解する。
画像エンコーダの認識能力は,各領域にまたがる画像やレポートを分析して向上する。
論文 参考訳(メタデータ) (2023-05-26T07:12:35Z) - Improving Chest X-Ray Classification by RNN-based Patient Monitoring [0.34998703934432673]
我々は、診断に関する情報がCNNに基づく画像分類モデルを改善する方法について分析する。
追加の患者履歴情報に基づいてトレーニングされたモデルが、情報のないトレーニングを受けたモデルよりも有意なマージンで優れていることを示す。
論文 参考訳(メタデータ) (2022-10-28T11:47:15Z) - Long-Tailed Classification of Thorax Diseases on Chest X-Ray: A New
Benchmark Study [75.05049024176584]
胸部X線上の胸部疾患の特定領域における長期学習問題についてベンチマーク研究を行った。
我々は,自然に分布する胸部X線データから学ぶことに集中し,一般的な「頭部」クラスだけでなく,稀ながら重要な「尾」クラスよりも分類精度を最適化する。
このベンチマークは、19と20の胸郭疾患分類のための2つの胸部X線データセットで構成され、53,000のクラスと7のラベル付きトレーニング画像を含む。
論文 参考訳(メタデータ) (2022-08-29T04:34:15Z) - A Deep Learning Technique using a Sequence of Follow Up X-Rays for
Disease classification [3.3345134768053635]
深層学習技術を用いて肺と心臓の疾患を予測する能力は多くの研究者の中心である。
最新の胸部X線像3例の追跡歴を含む患者のX線像は, 疾患分類において良好な成績を示すと推定された。
論文 参考訳(メタデータ) (2022-03-28T19:58:47Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
医療画像のためのエンドツーエンドのセミスーパーバイスドクロスモーダルコントラスト学習フレームワークを提案する。
まず、胸部X線を分類し、画像特徴を生成するために画像エンコーダを適用する。
放射能の特徴は別の専用エンコーダを通過し、同じ胸部x線から生成された画像の特徴の正のサンプルとして機能する。
論文 参考訳(メタデータ) (2021-04-11T09:16:29Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Joint Modeling of Chest Radiographs and Radiology Reports for Pulmonary
Edema Assessment [39.60171837961607]
我々は,胸部X線写真から肺浮腫の重症度を評価するために,画像と自由テキストの両方で訓練されたニューラルネットワークモデルを開発した。
実験結果から,共同画像・テキスト表現学習は肺浮腫評価の性能を向上させることが示唆された。
論文 参考訳(メタデータ) (2020-08-22T17:28:39Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
我々は、トレーニングデータと同じデータセットでテストすると、ディープラーニングモデルが、異なるソースからデータセットでテストされると、パフォーマンスが低下し始めることを示す。
対戦型トレーニング戦略を用いることで、ネットワークはソース不変表現を学習せざるを得ないことを示す。
論文 参考訳(メタデータ) (2020-08-04T07:41:15Z) - Evaluation of Contemporary Convolutional Neural Network Architectures
for Detecting COVID-19 from Chest Radiographs [0.0]
胸部X線写真解析のための3つのモデルアーキテクチャを,様々な条件下で訓練し,評価した。
本稿では,現代の研究によって提案された印象的なモデル性能を低下させる問題を見いだす。
論文 参考訳(メタデータ) (2020-06-30T15:22:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。