論文の概要: Statistical Inference for Heterogeneous Treatment Effects Discovered by
Generic Machine Learning in Randomized Experiments
- arxiv url: http://arxiv.org/abs/2203.14511v2
- Date: Wed, 20 Dec 2023 13:34:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-21 22:36:17.850562
- Title: Statistical Inference for Heterogeneous Treatment Effects Discovered by
Generic Machine Learning in Randomized Experiments
- Title(参考訳): ランダム化実験における汎用機械学習による異種処理効果の統計的推測
- Authors: Kosuke Imai, Michael Lingzhi Li
- Abstract要約: 汎用MLアルゴリズムにより検出された不均一な処理効果の統計的推測に対する一般的なアプローチを開発する。
各グループの平均治療効果を推定し,有効信頼区間を構築する方法について述べる。
- 参考スコア(独自算出の注目度): 1.0878040851638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Researchers are increasingly turning to machine learning (ML) algorithms to
investigate causal heterogeneity in randomized experiments. Despite their
promise, ML algorithms may fail to accurately ascertain heterogeneous treatment
effects under practical settings with many covariates and small sample size. In
addition, the quantification of estimation uncertainty remains a challenge. We
develop a general approach to statistical inference for heterogeneous treatment
effects discovered by a generic ML algorithm. We apply the Neyman's repeated
sampling framework to a common setting, in which researchers use an ML
algorithm to estimate the conditional average treatment effect and then divide
the sample into several groups based on the magnitude of the estimated effects.
We show how to estimate the average treatment effect within each of these
groups, and construct a valid confidence interval. In addition, we develop
nonparametric tests of treatment effect homogeneity across groups, and
rank-consistency of within-group average treatment effects. The validity of our
methodology does not rely on the properties of ML algorithms because it is
solely based on the randomization of treatment assignment and random sampling
of units. Finally, we generalize our methodology to the cross-fitting procedure
by accounting for the additional uncertainty induced by the random splitting of
data.
- Abstract(参考訳): 研究者たちは、ランダム化実験における因果不均一性を調べるために、機械学習(ML)アルゴリズムに目を向けている。
その約束にもかかわらず、MLアルゴリズムは、多くの共変量と小さなサンプルサイズを持つ実用的な設定の下で、不均一な処理効果を正確に確認できないかもしれない。
さらに、推定の不確実性の定量化は依然として課題である。
汎用MLアルゴリズムによって発見された不均一な処理効果の統計的推測に対する一般手法を開発する。
本研究では,Neymanの繰り返しサンプリングフレームワークを,MLアルゴリズムを用いて条件平均処理効果を推定し,推定した効果の大きさに基づいてサンプルを複数のグループに分割する,共通の設定に適用する。
本研究は,各群の平均治療効果を推定する方法を示し,有効信頼区間を構築する。
さらに, 群間における治療効果の均一性, 群内平均治療効果のランク一貫性に関する非パラメトリックテストを行った。
本手法の有効性は,処理代入のランダム化と単位のランダムサンプリングにのみ依存するため,MLアルゴリズムの特性に依存しない。
最後に,データのランダム分割によって引き起こされる付加的不確実性を考慮し,提案手法をクロスフィッティング手法に一般化する。
関連論文リスト
- Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner [72.20769640318969]
医療の安全性と有効性を理解するためには,観測データから因果量の推定が重要である。
医療従事者は、平均因果量の推定だけでなく、治療効果のランダム性をランダムな変数として理解する必要がある。
このランダム性はアレタリック不確実性と呼ばれ、治療効果の利益や量子化の確率を理解するために必要である。
論文 参考訳(メタデータ) (2024-11-05T18:14:49Z) - Identification of Average Causal Effects in Confounded Additive Noise Models [7.064432289838905]
結果に対する治療変数の任意のサブセットの平均因果効果(ACE)を推定するための新しいアプローチを提案する。
また,ノード数の多元対数に対する介入回数をさらに削減するランダム化アルゴリズムを提案する。
このことは、治療のどのサブセットの因果効果も、確立されたANMの結果を高い確率で推測するのに十分であることを示す。
論文 参考訳(メタデータ) (2024-07-13T21:46:57Z) - Multi-CATE: Multi-Accurate Conditional Average Treatment Effect Estimation Robust to Unknown Covariate Shifts [12.289361708127876]
我々は、CATE T-learnerを後処理するために、マルチ精度の予測子を学習するために方法論を使用する。
このアプローチは、(より大きな)確立された観測データと(より小さな)ランダム化されたデータセットを組み合わせることができることを示す。
論文 参考訳(メタデータ) (2024-05-28T14:12:25Z) - Statistical Performance Guarantee for Subgroup Identification with
Generic Machine Learning [1.0878040851638]
我々は、ジェネリックMLアルゴリズム(GATES)によりソートされたグループ平均処理効果を推定するための一様信頼バンドを開発する。
我々は,後期前立腺癌の臨床試験を解析し,例外的反応の比率が比較的高いことを見出した。
論文 参考訳(メタデータ) (2023-10-12T01:41:47Z) - Comparison of Methods that Combine Multiple Randomized Trials to
Estimate Heterogeneous Treatment Effects [0.1398098625978622]
複数のランダム化制御試験を活用することで、データセットと未確立の処理割り当ての組み合わせが可能になる。
本稿では,複数試行データを用いて不均一な治療効果を推定するための非パラメトリックなアプローチについて述べる。
論文 参考訳(メタデータ) (2023-03-28T20:43:00Z) - Rethinking Collaborative Metric Learning: Toward an Efficient
Alternative without Negative Sampling [156.7248383178991]
コラボレーティブ・メトリック・ラーニング(CML)パラダイムはレコメンデーション・システム(RS)分野に広く関心を集めている。
負のサンプリングが一般化誤差のバイアス付き推定に繋がることがわかった。
そこで我々は,SFCML (textitSampling-Free Collaborative Metric Learning) という名前のCMLに対して,負のサンプリングを伴わない効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-06-23T08:50:22Z) - Generalization bounds and algorithms for estimating conditional average
treatment effect of dosage [13.867315751451494]
本研究では,治療薬対の条件付き平均因果効果を観測データと仮定の組み合わせで推定する作業について検討した。
これは疫学や経済学など、意思決定のために治療薬対を必要とする分野における長年にわたる課題である。
この問題に対するいくつかのベンチマークデータセットに対して、実証的に新しい最先端のパフォーマンス結果を示す。
論文 参考訳(メタデータ) (2022-05-29T15:26:59Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Robust Recursive Partitioning for Heterogeneous Treatment Effects with
Uncertainty Quantification [84.53697297858146]
治療効果のサブグループ分析は、医療から公共政策、レコメンデーターシステムへの応用において重要な役割を担っている。
サブグループ分析の現在の手法のほとんどは、個別化処理効果(ITE)を推定するための特定のアルゴリズムから始まる。
本稿では、これらの弱点に対処する新しい部分群解析法R2Pを開発する。
論文 参考訳(メタデータ) (2020-06-14T14:50:02Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
本研究では,観測ネットワーク上でユニットが接続されたランダム化実験から直接処理効果を回復するマッチング手法を提案する。
本手法は, 近傍グラフ内の一意部分グラフの個数にほぼ一致する。
論文 参考訳(メタデータ) (2020-03-02T15:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。