A Strong Baseline for Point Cloud Registration via Direct Superpoints Matching
- URL: http://arxiv.org/abs/2307.01362v4
- Date: Fri, 29 Mar 2024 17:11:38 GMT
- Title: A Strong Baseline for Point Cloud Registration via Direct Superpoints Matching
- Authors: Aniket Gupta, Yiming Xie, Hanumant Singh, Huaizu Jiang,
- Abstract summary: We propose a simple and effective baseline to find correspondences of superpoints in a global matching manner.
Our simple yet effective baseline shows comparable or even better results than state-of-the-art methods on three datasets.
- Score: 7.308509114539376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks endow the downsampled superpoints with highly discriminative feature representations. Previous dominant point cloud registration approaches match these feature representations as the first step, e.g., using the Sinkhorn algorithm. A RANSAC-like method is then usually adopted as a post-processing refinement to filter the outliers. Other dominant method is to directly predict the superpoint matchings using learned MLP layers. Both of them have drawbacks: RANSAC-based methods are computationally intensive and prediction-based methods suffer from outputing non-existing points in the point cloud. In this paper, we propose a straightforward and effective baseline to find correspondences of superpoints in a global matching manner. We employ the normalized matching scores as weights for each correspondence, allowing us to reject the outliers and further weigh the rest inliers when fitting the transformation matrix without relying on the cumbersome RANSAC. Moreover, the entire model can be trained in an end-to-end fashion, leading to better accuracy. Our simple yet effective baseline shows comparable or even better results than state-of-the-art methods on three datasets including ModelNet, 3DMatch, and KITTI. We do not advocate our approach to be \emph{the} solution for point cloud registration but use the results to emphasize the role of matching strategy for point cloud registration. The code and models are available at https://github.com/neu-vi/Superpoints_Registration.
Related papers
- Inferring Neural Signed Distance Functions by Overfitting on Single Noisy Point Clouds through Finetuning Data-Driven based Priors [53.6277160912059]
We propose a method to promote pros of data-driven based and overfitting-based methods for better generalization, faster inference, and higher accuracy in learning neural SDFs.
We introduce a novel statistical reasoning algorithm in local regions which is able to finetune data-driven based priors without signed distance supervision, clean point cloud, or point normals.
arXiv Detail & Related papers (2024-10-25T16:48:44Z) - Robust Point Cloud Registration Framework Based on Deep Graph
Matching(TPAMI Version) [13.286247750893681]
3D point cloud registration is a fundamental problem in computer vision and robotics.
We propose a novel deep graph matching-based framework for point cloud registration.
arXiv Detail & Related papers (2022-11-09T06:05:25Z) - PointCLM: A Contrastive Learning-based Framework for Multi-instance
Point Cloud Registration [4.969636478156443]
PointCLM is a contrastive learning-based framework for mutli-instance point cloud registration.
Our method outperforms the state-of-the-art methods on both synthetic and real datasets by a large margin.
arXiv Detail & Related papers (2022-09-01T04:30:05Z) - Learning to Register Unbalanced Point Pairs [10.369750912567714]
Recent 3D registration methods can effectively handle large-scale or partially overlapping point pairs.
We present a novel 3D registration method, called UPPNet, for the unbalanced point pairs.
arXiv Detail & Related papers (2022-07-09T08:03:59Z) - REGTR: End-to-end Point Cloud Correspondences with Transformers [79.52112840465558]
We conjecture that attention mechanisms can replace the role of explicit feature matching and RANSAC.
We propose an end-to-end framework to directly predict the final set of correspondences.
Our approach achieves state-of-the-art performance on 3DMatch and ModelNet benchmarks.
arXiv Detail & Related papers (2022-03-28T06:01:00Z) - Geometric Transformer for Fast and Robust Point Cloud Registration [53.10568889775553]
We study the problem of extracting accurate correspondences for point cloud registration.
Recent keypoint-free methods bypass the detection of repeatable keypoints which is difficult in low-overlap scenarios.
We propose Geometric Transformer to learn geometric feature for robust superpoint matching.
arXiv Detail & Related papers (2022-02-14T13:26:09Z) - Unsupervised Representation Learning for 3D Point Cloud Data [66.92077180228634]
We propose a simple yet effective approach for unsupervised point cloud learning.
In particular, we identify a very useful transformation which generates a good contrastive version of an original point cloud.
We conduct experiments on three downstream tasks which are 3D object classification, shape part segmentation and scene segmentation.
arXiv Detail & Related papers (2021-10-13T10:52:45Z) - DeepBBS: Deep Best Buddies for Point Cloud Registration [55.12101890792121]
DeepBBS is a novel method for learning a representation that takes into account the best buddy distance between points during training.
Our experiments show improved performance compared to previous methods.
arXiv Detail & Related papers (2021-10-06T19:00:07Z) - Point Cloud Registration using Representative Overlapping Points [10.843159482657303]
We propose ROPNet, a new deep learning model using Representative Overlapping Points with discriminative features for registration.
Specifically, we propose a context-guided module which uses an encoder to extract global features for predicting point overlap score.
Experiments over ModelNet40 using noisy and partially overlapping point clouds show that the proposed method outperforms traditional and learning-based methods.
arXiv Detail & Related papers (2021-07-06T12:52:22Z) - Robust Point Cloud Registration Framework Based on Deep Graph Matching [5.865029600972316]
3D point cloud registration is a fundamental problem in computer vision and robotics.
We propose a novel deep graph matchingbased framework for point cloud registration.
arXiv Detail & Related papers (2021-03-07T04:20:29Z) - PointHop++: A Lightweight Learning Model on Point Sets for 3D
Classification [55.887502438160304]
The PointHop method was recently proposed by Zhang et al. for 3D point cloud classification with unsupervised feature extraction.
We improve the PointHop method furthermore in two aspects: 1) reducing its model complexity in terms of the model parameter number and 2) ordering discriminant features automatically based on the cross-entropy criterion.
With experiments conducted on the ModelNet40 benchmark dataset, we show that the PointHop++ method performs on par with deep neural network (DNN) solutions and surpasses other unsupervised feature extraction methods.
arXiv Detail & Related papers (2020-02-09T04:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.