TL-GAN: Improving Traffic Light Recognition via Data Synthesis for
Autonomous Driving
- URL: http://arxiv.org/abs/2203.15006v1
- Date: Mon, 28 Mar 2022 18:12:35 GMT
- Title: TL-GAN: Improving Traffic Light Recognition via Data Synthesis for
Autonomous Driving
- Authors: Danfeng Wang and Xin Ma and Xiaodong Yang
- Abstract summary: We propose a novel traffic light generation approach TL-GAN to synthesize the data of rare classes to improve traffic light recognition for autonomous driving.
In the image synthesis stage, our approach enables conditional generation to allow full control of the color of the generated traffic light images.
In the sequence assembling stage, we design the style mixing and adaptive template to synthesize realistic and diverse traffic light sequences.
- Score: 8.474436072102844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic light recognition, as a critical component of the perception module
of self-driving vehicles, plays a vital role in the intelligent transportation
systems. The prevalent deep learning based traffic light recognition methods
heavily hinge on the large quantity and rich diversity of training data.
However, it is quite challenging to collect data in various rare scenarios such
as flashing, blackout or extreme weather, thus resulting in the imbalanced
distribution of training data and consequently the degraded performance in
recognizing rare classes. In this paper, we seek to improve traffic light
recognition by leveraging data synthesis. Inspired by the generative
adversarial networks (GANs), we propose a novel traffic light generation
approach TL-GAN to synthesize the data of rare classes to improve traffic light
recognition for autonomous driving. TL-GAN disentangles traffic light sequence
generation into image synthesis and sequence assembling. In the image synthesis
stage, our approach enables conditional generation to allow full control of the
color of the generated traffic light images. In the sequence assembling stage,
we design the style mixing and adaptive template to synthesize realistic and
diverse traffic light sequences. Extensive experiments show that the proposed
TL-GAN renders remarkable improvement over the baseline without using the
generated data, leading to the state-of-the-art performance in comparison with
the competing algorithms that are used for general image synthesis and data
imbalance tackling.
Related papers
- Analysis of Classifier Training on Synthetic Data for Cross-Domain Datasets [4.696575161583618]
This study focuses on camera-based traffic sign recognition applications for advanced driver assistance systems and autonomous driving.
The proposed augmentation pipeline of synthetic datasets includes novel augmentation processes such as structured shadows and gaussian specular highlights.
Experiments showed that a synthetic image-based approach outperforms in most cases real image-based training when applied to cross-domain test datasets.
arXiv Detail & Related papers (2024-10-30T07:11:41Z) - Optical Flow Matters: an Empirical Comparative Study on Fusing Monocular Extracted Modalities for Better Steering [37.46760714516923]
This research introduces a new end-to-end method that exploits multimodal information from a single monocular camera to improve the steering predictions for self-driving cars.
By focusing on the fusion of RGB imagery with depth completion information or optical flow data, we propose a framework that integrates these modalities through both early and hybrid fusion techniques.
arXiv Detail & Related papers (2024-09-18T09:36:24Z) - Cross-domain Few-shot In-context Learning for Enhancing Traffic Sign Recognition [49.20086587208214]
We propose a cross-domain few-shot in-context learning method based on the MLLM for enhancing traffic sign recognition.
By using description texts, our method reduces the cross-domain differences between template and real traffic signs.
Our approach requires only simple and uniform textual indications, without the need for large-scale traffic sign images and labels.
arXiv Detail & Related papers (2024-07-08T10:51:03Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic
Forecasting [27.82230529014677]
The ability to forecast the state of traffic in a road network is an important functionality and a challenging task.
Recent proposals on spatial-temporal graph neural networks have achieved great progress at modeling complex spatial-temporal correlations in traffic data.
We propose a novel Decoupled Spatial-Temporal Framework (DSTF) that separates the diffusion and inherent traffic information in a data-driven manner.
arXiv Detail & Related papers (2022-06-18T04:14:38Z) - ModelLight: Model-Based Meta-Reinforcement Learning for Traffic Signal
Control [5.219291917441908]
This paper proposes a novel model-based meta-reinforcement learning framework (ModelLight) for traffic signal control.
Within ModelLight, an ensemble of models for road intersections and the optimization-based meta-learning method are used to improve the data efficiency of an RL-based traffic light control method.
Experiments on real-world datasets demonstrate that ModelLight can outperform state-of-the-art traffic light control algorithms.
arXiv Detail & Related papers (2021-11-15T20:25:08Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
Speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction.
One of the main challenges in SER is data scarcity.
We propose a transfer learning strategy combined with spectrogram augmentation.
arXiv Detail & Related papers (2021-08-05T10:39:39Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
We propose a method to generate artificial traffic-related training data for deep traffic light detectors.
This data is generated using basic non-realistic computer graphics to blend fake traffic scenes on top of arbitrary image backgrounds.
It also tackles the intrinsic data imbalance problem in traffic light datasets, caused mainly by the low amount of samples of the yellow state.
arXiv Detail & Related papers (2020-11-07T19:57:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.