論文の概要: CD-Net: Histopathology Representation Learning using Pyramidal
Context-Detail Network
- arxiv url: http://arxiv.org/abs/2203.15078v1
- Date: Mon, 28 Mar 2022 20:33:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-30 14:01:33.294957
- Title: CD-Net: Histopathology Representation Learning using Pyramidal
Context-Detail Network
- Title(参考訳): CD-Net:ピラミッドコンテキスト詳細ネットワークを用いた病理組織学的表現学習
- Authors: Saarthak Kapse, Srijan Das, Prateek Prasanna
- Abstract要約: CD-Netは提案されたコンテキストと詳細モジュールの協調トレーニングを通じてWSIピラミッド構造を利用する。
肺腺癌と扁平上皮癌との鑑別においてCD-Netの有効性が示された。
- 参考スコア(独自算出の注目度): 2.2735407169831077
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Extracting rich phenotype information, such as cell density and arrangement,
from whole slide histology images (WSIs), requires analysis of large field of
view, i.e more contexual information. This can be achieved through analyzing
the digital slides at lower resolution. A potential drawback is missing out on
details present at a higher resolution. To jointly leverage complementary
information from multiple resolutions, we present a novel transformer based
Pyramidal Context-Detail Network (CD-Net). CD-Net exploits the WSI pyramidal
structure through co-training of proposed Context and Detail Modules, which
operate on inputs from multiple resolutions. The residual connections between
the modules enable the joint training paradigm while learning self-supervised
representation for WSIs. The efficacy of CD-Net is demonstrated in classifying
Lung Adenocarcinoma from Squamous cell carcinoma.
- Abstract(参考訳): all slide histology images (wsis) から細胞密度や配列などの豊富な表現型情報を抽出するには、より大きな視野、すなわちよりコンテックスな情報の解析が必要である。
これはデジタルスライドを低解像度で解析することで実現できる。
潜在的な欠点は、より高い解像度にある詳細について欠落している。
複数の解像度からの補完情報を協調的に活用するために,新しいトランスフォーマーをベースとしたPraamidal Context-Detail Network(CD-Net)を提案する。
CD-Netは、複数の解像度からの入力を操作する提案されたContextとDetail Modulesの協調トレーニングを通じてWSIピラミッド構造を利用する。
モジュール間の残りの接続は、WSIの自己教師型表現を学習しながら、共同トレーニングパラダイムを可能にする。
cd-netは扁平上皮癌の肺腺癌の分類に有用である。
関連論文リスト
- TransResNet: Integrating the Strengths of ViTs and CNNs for High Resolution Medical Image Segmentation via Feature Grafting [6.987177704136503]
医用画像領域で高解像度画像が好ましいのは、基礎となる方法の診断能力を大幅に向上させるためである。
医用画像セグメンテーションのための既存のディープラーニング技術のほとんどは、空間次元が小さい入力画像に最適化されており、高解像度画像では不十分である。
我々はTransResNetという並列処理アーキテクチャを提案し、TransformerとCNNを並列的に組み合わせ、マルチ解像度画像から特徴を独立して抽出する。
論文 参考訳(メタデータ) (2024-10-01T18:22:34Z) - Modality-agnostic Domain Generalizable Medical Image Segmentation by Multi-Frequency in Multi-Scale Attention [1.1155836879100416]
医用画像セグメンテーションのためのModality-Agnostic Domain Generalizable Network (MADGNet)を提案する。
MFMSAブロックは空間的特徴抽出の過程を洗練させる。
E-SDMは、深い監督を伴うマルチタスク学習における情報損失を軽減する。
論文 参考訳(メタデータ) (2024-05-10T07:34:36Z) - Teaching AI the Anatomy Behind the Scan: Addressing Anatomical Flaws in Medical Image Segmentation with Learnable Prior [34.54360931760496]
臓器の数、形状、相対的な位置などの重要な解剖学的特徴は、堅牢な多臓器分割モデルの構築に不可欠である。
我々は Anatomy-Informed Network (AIC-Net) と呼ばれる新しいアーキテクチャを導入する。
AIC-Netは、患者固有の解剖学に適応できる「解剖学的事前」と呼ばれる学習可能な入力を組み込んでいる。
論文 参考訳(メタデータ) (2024-03-27T10:46:24Z) - Two-stage MR Image Segmentation Method for Brain Tumors based on
Attention Mechanism [27.08977505280394]
CycleGAN(CycleGAN)に基づく協調・空間的注意生成対向ネットワーク(CASP-GAN)を提案する。
ジェネレータの性能は、コーディネート・アテンション(CA)モジュールと空間アテンション(SA)モジュールを導入することで最適化される。
元の医用画像の構造情報と詳細な情報を抽出する能力は、所望の画像をより高品質に生成するのに役立つ。
論文 参考訳(メタデータ) (2023-04-17T08:34:41Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
医用画像から多様なセグメンテーションを仕上げるマルチスケールサブトラクションネットワーク(M$2$SNet)を提案する。
本手法は,4つの異なる医用画像セグメンテーションタスクの11つのデータセットに対して,異なる評価基準の下で,ほとんどの最先端手法に対して好意的に機能する。
論文 参考訳(メタデータ) (2023-03-20T06:26:49Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
そこで我々は,アノテーション付きオルガンクラスから一般化されたオルガン概念を学習し,その概念を未知のクラスに転送するOrganNetを提案する。
そこで,OrganNetは臓器形態の幅広い変化に効果的に抵抗でき,一発分節タスクで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-30T13:41:12Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
本稿では,高品質(本社)画像再構成のために,異なる状態の情報をどのように組み合わせるべきかを学習するディープインターリーブドネットワーク(DIN)を提案する。
本稿では,各インターリーブノードにアタッチメントされた非対称なコアテンション(AsyCA)を提案し,その特性依存性をモデル化する。
提案したDINはエンドツーエンドで訓練でき、様々な画像復元タスクに適用できる。
論文 参考訳(メタデータ) (2020-10-29T15:32:00Z) - Boundary-aware Context Neural Network for Medical Image Segmentation [15.585851505721433]
医用画像のセグメンテーションは、さらなる臨床分析と疾患診断のための信頼性の高い基盤を提供することができる。
既存のCNNベースのほとんどの手法は、正確なオブジェクト境界のない不満足なセグメンテーションマスクを生成する。
本稿では,2次元医用画像分割のための境界認識コンテキストニューラルネットワーク(BA-Net)を定式化する。
論文 参考訳(メタデータ) (2020-05-03T02:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。