論文の概要: Modality-agnostic Domain Generalizable Medical Image Segmentation by Multi-Frequency in Multi-Scale Attention
- arxiv url: http://arxiv.org/abs/2405.06284v1
- Date: Fri, 10 May 2024 07:34:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 16:27:43.217877
- Title: Modality-agnostic Domain Generalizable Medical Image Segmentation by Multi-Frequency in Multi-Scale Attention
- Title(参考訳): マルチ周波数・マルチスケールアテンションによるモダリティ非依存領域一般化型医用画像分割
- Authors: Ju-Hyeon Nam, Nur Suriza Syazwany, Su Jung Kim, Sang-Chul Lee,
- Abstract要約: 医用画像セグメンテーションのためのModality-Agnostic Domain Generalizable Network (MADGNet)を提案する。
MFMSAブロックは空間的特徴抽出の過程を洗練させる。
E-SDMは、深い監督を伴うマルチタスク学習における情報損失を軽減する。
- 参考スコア(独自算出の注目度): 1.1155836879100416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalizability in deep neural networks plays a pivotal role in medical image segmentation. However, deep learning-based medical image analyses tend to overlook the importance of frequency variance, which is critical element for achieving a model that is both modality-agnostic and domain-generalizable. Additionally, various models fail to account for the potential information loss that can arise from multi-task learning under deep supervision, a factor that can impair the model representation ability. To address these challenges, we propose a Modality-agnostic Domain Generalizable Network (MADGNet) for medical image segmentation, which comprises two key components: a Multi-Frequency in Multi-Scale Attention (MFMSA) block and Ensemble Sub-Decoding Module (E-SDM). The MFMSA block refines the process of spatial feature extraction, particularly in capturing boundary features, by incorporating multi-frequency and multi-scale features, thereby offering informative cues for tissue outline and anatomical structures. Moreover, we propose E-SDM to mitigate information loss in multi-task learning with deep supervision, especially during substantial upsampling from low resolution. We evaluate the segmentation performance of MADGNet across six modalities and fifteen datasets. Through extensive experiments, we demonstrate that MADGNet consistently outperforms state-of-the-art models across various modalities, showcasing superior segmentation performance. This affirms MADGNet as a robust solution for medical image segmentation that excels in diverse imaging scenarios. Our MADGNet code is available in GitHub Link.
- Abstract(参考訳): ディープニューラルネットワークの一般化性は、医療画像のセグメンテーションにおいて重要な役割を果たす。
しかし、深層学習に基づく医用画像解析は周波数分散の重要性を無視する傾向があり、これはモダリティ非依存とドメイン一般化の両方が可能なモデルを実現する上で重要な要素である。
さらに、様々なモデルでは、モデル表現能力を損なう要因である深い監督の下でマルチタスク学習から生じる潜在的な情報損失を考慮できない。
これらの課題に対処するために,MFMSAブロック(Multi-Frequency in Multi-Scale Attention, MFMSA)ブロックとE-SDM(Ensemble Sub-Decoding Module)という2つの主要コンポーネントからなる医用画像セグメンテーションのためのModality-Agnostic Domain Generalizable Network (MADGNet)を提案する。
MFMSAブロックは、特に境界特徴の捕捉において、多周波および多周波の特徴を取り入れて空間的特徴抽出のプロセスを洗練し、組織輪郭と解剖学的構造に対する情報的手がかりを提供する。
さらに,マルチタスク学習における情報損失を軽減するためのE-SDMを提案する。
我々はMADGNetのセグメンテーション性能を6つのモードと15のデータセットで評価した。
広範囲な実験により,MADGNet は様々なモーダルにまたがる最先端モデルより一貫して優れており,セグメンテーション性能が優れていることを示す。
このことは、MADGNetが様々な画像シナリオに優れた医療画像セグメンテーションの堅牢なソリューションであると断定する。
私たちのMADGNetコードはGitHub Linkで利用可能です。
関連論文リスト
- Do Vision Foundation Models Enhance Domain Generalization in Medical Image Segmentation? [10.20366295974822]
本稿では,2つの最先端デコーダヘッドであるHSAMとHQSAMの要素を統合し,セグメンテーション性能を向上させる新しいデコーダヘッドアーキテクチャであるHQHSAMを紹介する。
種々の解剖学やモダリティを含む複数のデータセットに対する実験により,FM,特にHQHSAMデコードヘッドを用いて,医用画像分割のための領域一般化が向上したことが明らかとなった。
論文 参考訳(メタデータ) (2024-09-12T11:41:35Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Two-stage MR Image Segmentation Method for Brain Tumors based on
Attention Mechanism [27.08977505280394]
CycleGAN(CycleGAN)に基づく協調・空間的注意生成対向ネットワーク(CASP-GAN)を提案する。
ジェネレータの性能は、コーディネート・アテンション(CA)モジュールと空間アテンション(SA)モジュールを導入することで最適化される。
元の医用画像の構造情報と詳細な情報を抽出する能力は、所望の画像をより高品質に生成するのに役立つ。
論文 参考訳(メタデータ) (2023-04-17T08:34:41Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
医用画像から多様なセグメンテーションを仕上げるマルチスケールサブトラクションネットワーク(M$2$SNet)を提案する。
本手法は,4つの異なる医用画像セグメンテーションタスクの11つのデータセットに対して,異なる評価基準の下で,ほとんどの最先端手法に対して好意的に機能する。
論文 参考訳(メタデータ) (2023-03-20T06:26:49Z) - Multimodal Multi-Head Convolutional Attention with Various Kernel Sizes
for Medical Image Super-Resolution [56.622832383316215]
超解像CTおよびMRIスキャンのための新しいマルチヘッド畳み込みアテンションモジュールを提案する。
我々の注目モジュールは、畳み込み操作を用いて、複数の入力テンソルに対して共同的な空間チャネルアテンションを行う。
それぞれの頭部は空間的注意に対する特定の減少率に応じた受容野の大きさの異なる複数の注意ヘッドを導入している。
論文 参考訳(メタデータ) (2022-04-08T07:56:55Z) - (M)SLAe-Net: Multi-Scale Multi-Level Attention embedded Network for
Retinal Vessel Segmentation [0.0]
マルチステージ処理の課題に対処するため,マルチスケールでマルチレベルなCNNアーキテクチャ((M)SLAe-Net)を提案する。
我々は、複数のスケールとネットワークの複数のレベルの特徴を抽出することで、我々のモデルが局所的およびグローバル的特徴を全体的に抽出することを可能にする。
D-DPPモジュールは細管に効率よくタスク特異的な損失機能を持たせることで,クロスデータ性能の向上を実現した。
論文 参考訳(メタデータ) (2021-09-05T14:29:00Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - MSRF-Net: A Multi-Scale Residual Fusion Network for Biomedical Image
Segmentation [10.979393806308648]
医用画像分割タスクに特化して設計されたMSRF-Netという新しいアーキテクチャを提案する。
MSRF-Netは、デュアルスケール高密度核融合ブロック(DSDF)を用いて、様々な受容場のマルチスケール特徴を交換できる
我々のDSDFブロックは2つの異なる解像度スケールで情報交換が可能であり、MSRFサブネットワークは複数のDSDFブロックを順次使用してマルチスケール融合を行う。
論文 参考訳(メタデータ) (2021-05-16T15:19:56Z) - Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention
and Dynamic Resampling [13.542898009730804]
関連するアルゴリズムの性能は、マルチモーダル情報の適切な融合によって大きく影響を受ける。
We present the Max-Fusion U-Net that achieve a improve pathology segmentation performance。
マルチシーケンスCMRデータセットを併用したMyoPS(Myocardial pathology segmentation)を用いて,本手法の評価を行った。
論文 参考訳(メタデータ) (2020-09-05T17:24:23Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
画像モダリティの欠如に頑健な新しいマルチモーダルセグメンテーションフレームワークを提案する。
我々のネットワークは、入力モードをモダリティ固有の外観コードに分解するために、特徴不整合を用いる。
我々は,BRATSチャレンジデータセットを用いて,重要なマルチモーダル脳腫瘍セグメンテーション課題に対する本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-02-22T14:32:04Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。