A quantum-inspired tensor network method for constrained combinatorial
optimization problems
- URL: http://arxiv.org/abs/2203.15246v2
- Date: Mon, 5 Sep 2022 19:55:33 GMT
- Title: A quantum-inspired tensor network method for constrained combinatorial
optimization problems
- Authors: Tianyi Hao and Xuxin Huang and Chunjing Jia and Cheng Peng
- Abstract summary: We propose a quantum-inspired tensor-network-based algorithm for general locally constrained optimization problems.
Our algorithm constructs a Hamiltonian for the problem of interest, effectively mapping it to a quantum problem.
Our results show the effectiveness of this construction and potential applications.
- Score: 5.904219009974901
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combinatorial optimization is of general interest for both theoretical study
and real-world applications. Fast-developing quantum algorithms provide a
different perspective on solving combinatorial optimization problems. In this
paper, we propose a quantum-inspired tensor-network-based algorithm for general
locally constrained combinatorial optimization problems. Our algorithm
constructs a Hamiltonian for the problem of interest, effectively mapping it to
a quantum problem, then encodes the constraints directly into a tensor network
state and solves the optimal solution by evolving the system to the ground
state of the Hamiltonian. We demonstrate our algorithm with the open-pit mining
problem, which results in a quadratic asymptotic time complexity. Our numerical
results show the effectiveness of this construction and potential applications
in further studies for general combinatorial optimization problems.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Hamiltonian-based Quantum Reinforcement Learning for Neural Combinatorial Optimization [2.536162003546062]
We introduce Hamiltonian-based Quantum Reinforcement Learning (QRL) an approach at the intersection of Quantum Computing (QC) and Neuralial Optimization (NCO)
Our ansatzes show favourable trainability properties when compared to the hardware efficient ansatzes, while also not being limited to graph-based problems, unlike previous works.
In this work, we evaluate the performance of Hamiltonian-based QRL on a diverse set of optimization problems to demonstrate the broad applicability of our approach and compare it to QAOA.
arXiv Detail & Related papers (2024-05-13T14:36:22Z) - A hybrid Quantum-Classical Algorithm for Mixed-Integer Optimization in Power Systems [0.0]
We present a framework for solving power system optimization problems with a Quantum Computer (QC)
Our guiding applications are the optimal transmission switching and the verification of neural networks trained to solve a DC Optimal Power Flow.
arXiv Detail & Related papers (2024-04-16T16:11:56Z) - Ising formulation of integer optimization problems for utilizing quantum
annealing in iterative improvement strategy [1.14219428942199]
We propose an Ising formulation of integer optimization problems to utilize quantum annealing in the iterative improvement strategy.
We analytically show that a first-order phase transition is successfully avoided for a fully connected ferro Potts model if the overlap between a ground state and a candidate solution exceeds a threshold.
arXiv Detail & Related papers (2022-11-08T02:12:49Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
This paper presents a critical analysis on the incorporation of algorithms based on neural networks into the classical optimization framework.
A comprehensive study is carried out to analyse the fundamental aspects of such algorithms, including performance, transferability, computational cost and to larger-sized instances.
arXiv Detail & Related papers (2022-05-03T07:54:56Z) - Classically-Boosted Quantum Optimization Algorithm [0.0]
We explore a natural approach to leveraging existing classical techniques to enhance quantum optimization.
Specifically, we run a classical algorithm to find an approximate solution and then use a quantum circuit to search its "neighborhood" for higher-quality solutions.
We demonstrate the applications of CBQOA to Max 3SAT and Max Bisection, and provide empirical evidence that it outperforms previous approaches on these problems.
arXiv Detail & Related papers (2022-03-25T23:36:14Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
We propose an algorithm inspired by optical coherent Ising machines to solve the problem of unconstrained binary optimization.
We benchmark the proposed algorithm against existing PUBO algorithms, and observe its superior performance.
The application of our algorithm to protein folding and quantum chemistry problems sheds light on the shortcomings of approxing the electronic structure problem by a PUBO problem.
arXiv Detail & Related papers (2021-06-24T16:39:31Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z) - Quantum approximate algorithm for NP optimization problems with
constraints [12.294570891467604]
In this paper, we formalize different constraint types to equalities, linear inequalities, and arbitrary form.
Based on this, we propose constraint-encoding schemes well-fitting into the QAOA framework for solving NP optimization problems.
The implemented algorithms demonstrate the effectiveness and efficiency of the proposed scheme.
arXiv Detail & Related papers (2020-02-01T04:45:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.