Ising formulation of integer optimization problems for utilizing quantum
annealing in iterative improvement strategy
- URL: http://arxiv.org/abs/2211.03957v1
- Date: Tue, 8 Nov 2022 02:12:49 GMT
- Title: Ising formulation of integer optimization problems for utilizing quantum
annealing in iterative improvement strategy
- Authors: Shuntaro Okada, Masayuki Ohzeki
- Abstract summary: We propose an Ising formulation of integer optimization problems to utilize quantum annealing in the iterative improvement strategy.
We analytically show that a first-order phase transition is successfully avoided for a fully connected ferro Potts model if the overlap between a ground state and a candidate solution exceeds a threshold.
- Score: 1.14219428942199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum annealing is a heuristic algorithm for searching the ground state of
an Ising model. Heuristic algorithms aim to obtain near-optimal solutions with
a reasonable computation time. Accordingly, many algorithms have so far been
proposed. In general, the performance of heuristic algorithms strongly depends
on the instance of the combinatorial optimization problem to be solved because
they escape the local minima in different ways. Therefore, combining several
algorithms to exploit their complementary strength is effective for obtaining
highly accurate solutions for a wide range of combinatorial optimization
problems. However, quantum annealing cannot be used to improve a candidate
solution obtained by other algorithms because it starts from an initial state
where all spin configurations are found with a uniform probability. In this
study, we propose an Ising formulation of integer optimization problems to
utilize quantum annealing in the iterative improvement strategy. Our
formulation exploits the biased sampling of degenerated ground states in
transverse magnetic field quantum annealing. We also analytically show that a
first-order phase transition is successfully avoided for a fully connected
ferromagnetic Potts model if the overlap between a ground state and a candidate
solution exceeds a threshold. The proposed formulation is applicable to a wide
range of integer optimization problems and enables us to hybridize quantum
annealing with other optimization algorithms.
Related papers
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
gradient-based algorithms are widely used in bilevel optimization.
We introduce a without-replacement sampling based algorithm which achieves a faster convergence rate.
We validate our algorithms over both synthetic and real-world applications.
arXiv Detail & Related papers (2024-11-07T17:05:31Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - A quantum-inspired tensor network method for constrained combinatorial
optimization problems [5.904219009974901]
We propose a quantum-inspired tensor-network-based algorithm for general locally constrained optimization problems.
Our algorithm constructs a Hamiltonian for the problem of interest, effectively mapping it to a quantum problem.
Our results show the effectiveness of this construction and potential applications.
arXiv Detail & Related papers (2022-03-29T05:44:07Z) - Quantum walk in a reinforced free-energy landscape: Quantum annealing
with reinforcement [0.0]
Reinforcement is one of the strategies that can be used to circumvent the exponentially small energy gaps of the system.
In this study, we take a local entropy in the configuration space for the reinforcement and apply the algorithm to a number of easy and hard optimization problems.
arXiv Detail & Related papers (2022-02-22T14:16:27Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - A Hybrid Quantum-Classical Heuristic to solve large-scale Integer Linear
Programs [0.4925222726301578]
We present a method that integrates any quantum algorithm capable of finding solutions to integer linear programs into the Branch-and-Price algorithm.
The role of the quantum algorithm is to find integer solutions to subproblems appearing in Branch-and-Price.
arXiv Detail & Related papers (2021-03-29T08:59:26Z) - Improving the Quantum Approximate Optimization Algorithm with
postselection [0.0]
Combinatorial optimization is among the main applications envisioned for near-term and fault-tolerant quantum computers.
We consider a well-studied quantum algorithm for optimization: the Quantum Approximate Optimization Algorithm (QAOA) applied to the MaxCut problem on 3-regular graphs.
We derive theoretical upper and lower bounds showing that a constant (though small) increase of the fraction of satisfied edges is indeed achievable.
arXiv Detail & Related papers (2020-11-10T22:17:50Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Warm-starting quantum optimization [6.832341432995627]
We discuss how to warm-start quantum optimization with an initial state corresponding to the solution of a relaxation of an optimization problem.
This allows the quantum algorithm to inherit the performance guarantees of the classical algorithm.
It is straightforward to apply the same ideas to other randomized-rounding schemes and optimization problems.
arXiv Detail & Related papers (2020-09-21T18:00:09Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.