論文の概要: SIOD: Single Instance Annotated Per Category Per Image for Object
Detection
- arxiv url: http://arxiv.org/abs/2203.15353v2
- Date: Wed, 30 Mar 2022 02:24:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-31 11:40:25.082412
- Title: SIOD: Single Instance Annotated Per Category Per Image for Object
Detection
- Title(参考訳): SIOD: オブジェクト検出のためのカテゴリ毎のイメージにアノテートされた単一インスタンス
- Authors: Hanjun Li, Xingjia Pan, Ke Yan, Fan Tang, Wei-Shi Zheng
- Abstract要約: 画像内の既存のカテゴリ毎に1つのインスタンスアノテーションのみを必要とする単一インスタンスアノテーションオブジェクト検出(SIOD)を提案する。
WSOD(Inter-task)やSSOD(Inter-image)の相違点からイメージ内の相違点に分解されたSIODは、ラベルなしインスタンスの残りをマイニングする上で、より信頼性が高く豊富な事前知識を提供する。
SIOD設定下では、類似性に基づく擬似ラベル生成モジュール(SPLG)と、Pixelレベルのグループコントラスト学習モジュール(PGCL)からなる、シンプルで効果的なフレームワークであるDual-Mining(DMiner)を提案する。
- 参考スコア(独自算出の注目度): 67.64774488115299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection under imperfect data receives great attention recently.
Weakly supervised object detection (WSOD) suffers from severe localization
issues due to the lack of instance-level annotation, while semi-supervised
object detection (SSOD) remains challenging led by the inter-image discrepancy
between labeled and unlabeled data. In this study, we propose the Single
Instance annotated Object Detection (SIOD), requiring only one instance
annotation for each existing category in an image. Degraded from inter-task
(WSOD) or inter-image (SSOD) discrepancies to the intra-image discrepancy, SIOD
provides more reliable and rich prior knowledge for mining the rest of
unlabeled instances and trades off the annotation cost and performance. Under
the SIOD setting, we propose a simple yet effective framework, termed
Dual-Mining (DMiner), which consists of a Similarity-based Pseudo Label
Generating module (SPLG) and a Pixel-level Group Contrastive Learning module
(PGCL). SPLG firstly mines latent instances from feature representation space
to alleviate the annotation missing problem. To avoid being misled by
inaccurate pseudo labels, we propose PGCL to boost the tolerance to false
pseudo labels. Extensive experiments on MS COCO verify the feasibility of the
SIOD setting and the superiority of the proposed method, which obtains
consistent and significant improvements compared to baseline methods and
achieves comparable results with fully supervised object detection (FSOD)
methods with only 40% instances annotated.
- Abstract(参考訳): 不完全なデータによる物体検出は近年注目されている。
半教師付きオブジェクト検出 (SSOD) は, ラベル付きデータとラベルなしデータとの相互差が原因で困難でありながら, インスタンスレベルのアノテーションが欠如しているため, 厳密なローカライズ問題に悩まされている。
本研究では,画像内の既存カテゴリごとに1つのインスタンスアノテーションを必要とする単一インスタンスアノテートオブジェクト検出(SIOD)を提案する。
WSOD(Inter-task)やSSOD(Inter-image)の相違点からイメージ内の相違点まで、SIODは、未ラベルのインスタンスの残りをマイニングするための信頼性と豊富な事前知識を提供し、アノテーションのコストとパフォーマンスをトレードオフする。
SIOD設定では、類似性に基づくPseudo Label Generating Module (SPLG) と Pixel レベルの Group Contrastive Learning Module (PGCL) から構成される、シンプルで効果的なDual-Mining (DMiner) というフレームワークを提案する。
SPLGはまず、アノテーションの欠落の問題を軽減するために、潜在インスタンスを特徴表現空間から抽出する。
不正確な擬似ラベルによる誤解を避けるため,偽擬似ラベルに対する耐性を高めるためにPGCLを提案する。
MS COCOにおける広範囲な実験により,SIOD設定の有効性と提案手法の優位性が検証され,ベースライン法と比較して一貫した,有意な改善が得られ,40%のインスタンスにアノテートしたフル教師付きオブジェクト検出(FSOD)法と同等の結果が得られた。
関連論文リスト
- Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
オープンセットのシナリオでは、ラベルなしデータセットには、イン・ディストリビューション(ID)クラスとアウト・オブ・ディストリビューション(OOD)クラスの両方が含まれている。
このような設定で半教師付き検出器を適用すると、OODクラスをIDクラスとして誤分類する可能性がある。
我々は、CFL-Detector(Collaborative Feature-Logits Detector)と呼ばれるシンプルで効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-11-20T02:57:35Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
半教師付きオープンワールド検出(SS-OWOD)という,より現実的な定式化を導入する。
提案したSS-OWOD設定では,最先端OWOD検出器の性能が劇的に低下することが実証された。
我々は,MS COCO, PASCAL, Objects365, DOTAの4つのデータセットを用いた実験を行い, 提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-02-25T07:12:51Z) - Open-Set Semi-Supervised Object Detection [43.464223594166654]
近年,Semi-Supervised Object Detection (SSOD) の開発が進められている。
我々は、より実用的で難しい問題、OSSOD(Open-Set Semi-Supervised Object Detection)を考える。
提案フレームワークはセマンティック拡張問題に効果的に対処し,OSSODベンチマークにおける一貫した改善を示す。
論文 参考訳(メタデータ) (2022-08-29T17:04:30Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
本報告では,本問題に対する第1の弱教師付きアプローチを提案する。
本稿では,候補対象の特定にクラス整合性情報を活用するSaliency Detection Branch,オブジェクト境界をデライン化するためにクラス整合性情報を利用するBundary Detection Branch,サブティナイズ情報を用いたCentroid Detection Branchを提案する。
論文 参考訳(メタデータ) (2021-11-19T10:15:22Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
弱機能および半教師付きオブジェクト検出フレームワーク(WSSOD)を提案する。
エージェント検出器は、まず関節データセット上でトレーニングされ、弱注釈画像上で擬似境界ボックスを予測するために使用される。
提案フレームワークはPASCAL-VOC と MSCOCO のベンチマークで顕著な性能を示し,完全教師付き環境で得られたものと同等の性能を達成している。
論文 参考訳(メタデータ) (2021-05-21T11:58:50Z) - Co-mining: Self-Supervised Learning for Sparsely Annotated Object
Detection [29.683119976550007]
我々は,簡潔な注釈付き物体検出のためのシンプルだが効果的な機構であるCo-miningを提案する。
共同マイニングでは、シームズネットワークの2つのブランチが互いに擬似ラベルセットを予測します。
実験は3つの異なるアノテートされた設定でMSデータセット上で行われる。
論文 参考訳(メタデータ) (2020-12-03T14:23:43Z) - Temporal Action Detection with Multi-level Supervision [116.55596693897388]
本稿では,ラベル付きデータとラベルなしデータを組み合わせたSemi-supervised Action Detection (SSAD)タスクを紹介する。
半教師付き分類タスクから直接適応したSSADベースラインの異なるタイプのエラーを解析する。
我々は,弱いラベル付きデータをSSADに組み込んで,3段階の監視レベルを持つOmni-supervised Action Detection (OSAD)を提案する。
論文 参考訳(メタデータ) (2020-11-24T04:45:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。