論文の概要: Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection
- arxiv url: http://arxiv.org/abs/2411.13001v1
- Date: Wed, 20 Nov 2024 02:57:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:12:19.653602
- Title: Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection
- Title(参考訳): オープンセット半教師対象検出のための協調的特徴量比較学習
- Authors: Xinhao Zhong, Siyu Jiao, Yao Zhao, Yunchao Wei,
- Abstract要約: オープンセットのシナリオでは、ラベルなしデータセットには、イン・ディストリビューション(ID)クラスとアウト・オブ・ディストリビューション(OOD)クラスの両方が含まれている。
このような設定で半教師付き検出器を適用すると、OODクラスをIDクラスとして誤分類する可能性がある。
我々は、CFL-Detector(Collaborative Feature-Logits Detector)と呼ばれるシンプルで効果的な方法を提案する。
- 参考スコア(独自算出の注目度): 75.02249869573994
- License:
- Abstract: Current Semi-Supervised Object Detection (SSOD) methods enhance detector performance by leveraging large amounts of unlabeled data, assuming that both labeled and unlabeled data share the same label space. However, in open-set scenarios, the unlabeled dataset contains both in-distribution (ID) classes and out-of-distribution (OOD) classes. Applying semi-supervised detectors in such settings can lead to misclassifying OOD class as ID classes. To alleviate this issue, we propose a simple yet effective method, termed Collaborative Feature-Logits Detector (CFL-Detector). Specifically, we introduce a feature-level clustering method using contrastive loss to clarify vector boundaries in the feature space and highlight class differences. Additionally, by optimizing the logits-level uncertainty classification loss, the model enhances its ability to effectively distinguish between ID and OOD classes. Extensive experiments demonstrate that our method achieves state-of-the-art performance compared to existing methods.
- Abstract(参考訳): 現在のSemi-Supervised Object Detection (SSOD) 法は、ラベル付きデータとラベルなしデータの両方が同じラベル空間を共有していると仮定して、大量のラベル付きデータを活用することにより、検出性能を向上させる。
しかし、オープンセットのシナリオでは、ラベルなしデータセットは、イン・ディストリビューション(ID)クラスとアウト・オブ・ディストリビューション(OOD)クラスの両方を含んでいる。
このような設定で半教師付き検出器を適用すると、OODクラスをIDクラスとして誤分類する可能性がある。
この問題を軽減するために,CFL-Detector(Collaborative Feature-Logits Detector)と呼ばれる,シンプルで効果的な手法を提案する。
具体的には,特徴空間におけるベクトル境界を明確にし,クラス差を強調するために,対照的な損失を用いた特徴レベルのクラスタリング手法を提案する。
さらに,ロジットレベルの不確実性分類損失を最適化することにより,IDクラスとOODクラスを効果的に識別する能力を向上させる。
大規模な実験により,本手法は既存手法と比較して最先端の性能を達成できることが示された。
関連論文リスト
- Credible Teacher for Semi-Supervised Object Detection in Open Scene [106.25850299007674]
Open Scene Semi-Supervised Object Detection (O-SSOD)では、ラベル付きデータはラベル付きデータで観測されていない未知のオブジェクトを含む可能性がある。
より不確実性が、偽ラベルのローカライズと分類精度の低下につながるため、主に自己学習に依存する現在の手法には有害である。
我々は,不確実な擬似ラベルがモデルに誤解をもたらすのを防ぐための,エンドツーエンドのフレームワークであるCredible Teacherを提案する。
論文 参考訳(メタデータ) (2024-01-01T08:19:21Z) - Semi-Supervised Object Detection with Uncurated Unlabeled Data for
Remote Sensing Images [16.660668160785615]
半教師付きオブジェクト検出(SSOD)手法は、ラベルのないデータに対して擬似ラベルを生成することでこの問題に対処する。
しかし、現実の状況では、ラベルなしデータセット内の分布外サンプル(OOD)と分布内サンプル(ID)が混在する可能性がある。
未ラベルデータに対するOpen-Set Semi-Supervised Object Detection (OSSOD)を提案する。
論文 参考訳(メタデータ) (2023-10-09T07:59:31Z) - Ambiguity-Resistant Semi-Supervised Learning for Dense Object Detection [98.66771688028426]
本研究では,一段階検出器のためのAmbiguity-Resistant Semi-supervised Learning (ARSL)を提案する。
擬似ラベルの分類とローカライズ品質を定量化するために,JCE(Joint-Confidence Estimation)を提案する。
ARSLは、曖昧さを効果的に軽減し、MS COCOおよびPASCALVOC上で最先端のSSOD性能を達成する。
論文 参考訳(メタデータ) (2023-03-27T07:46:58Z) - Open-World Object Detection via Discriminative Class Prototype Learning [4.055884768256164]
オープンワールドオブジェクト検出(OWOD)は、オブジェクト検出とインクリメンタルラーニングとオープンセットラーニングを組み合わせた難しい問題である。
OCPL: 差別的OCPL: オープンワールドオブジェクト検出: 差別的OCPL: 差別的OCPL: オープンワールドオブジェクト検出: 差別的OCPL: 差別的OCPL: オープンワールドオブジェクト検出: 差別的OCPL: 差別的OCPL: オープンワールドオブジェクト検出: 差別的OCPL: 差別的OCPL: オープンワールドオブジェクト検出: オープンワールドオブジェクト検出
論文 参考訳(メタデータ) (2023-02-23T03:05:04Z) - Prompt-driven efficient Open-set Semi-supervised Learning [52.30303262499391]
オープンセット半教師付き学習(OSSL)は関心を集めており、未ラベルデータにのみOOD(Out-of-distribution)サンプルが組み込まれているというより実践的なシナリオを調査している。
我々はOpenPromptと呼ばれる,プロンプト駆動の効率的なOSSLフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-28T16:25:08Z) - Open-Set Semi-Supervised Object Detection [43.464223594166654]
近年,Semi-Supervised Object Detection (SSOD) の開発が進められている。
我々は、より実用的で難しい問題、OSSOD(Open-Set Semi-Supervised Object Detection)を考える。
提案フレームワークはセマンティック拡張問題に効果的に対処し,OSSODベンチマークにおける一貫した改善を示す。
論文 参考訳(メタデータ) (2022-08-29T17:04:30Z) - Towards Textual Out-of-Domain Detection without In-Domain Labels [41.23096594140221]
この研究は、ドメイン内のデータのラベルにアクセスできないOOD検出の難しいケースに焦点を当てている。
まず、トークン列の確率を予測する異なる言語モデルに基づくアプローチを評価する。
教師なしクラスタリングとコントラスト学習を組み合わせた表現学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T00:11:46Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
本報告では,本問題に対する第1の弱教師付きアプローチを提案する。
本稿では,候補対象の特定にクラス整合性情報を活用するSaliency Detection Branch,オブジェクト境界をデライン化するためにクラス整合性情報を利用するBundary Detection Branch,サブティナイズ情報を用いたCentroid Detection Branchを提案する。
論文 参考訳(メタデータ) (2021-11-19T10:15:22Z) - Weakly-supervised Salient Instance Detection [65.0408760733005]
本報告では,本問題に対する第1の弱教師付きアプローチを提案する。
本稿では,候補対象の特定にクラス整合性情報を活用するSaliency Detection Branch,オブジェクト境界をデライン化するためにクラス整合性情報を利用するBundary Detection Branch,サブティナイズ情報を用いたCentroid Detection Branchを提案する。
論文 参考訳(メタデータ) (2020-09-29T09:47:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。