Supervised binary classification of small-scale digits images with a trapped-ion quantum processor
- URL: http://arxiv.org/abs/2406.12007v1
- Date: Mon, 17 Jun 2024 18:20:51 GMT
- Title: Supervised binary classification of small-scale digits images with a trapped-ion quantum processor
- Authors: Ilia V. Zalivako, Alexander I. Gircha, Anastasiia S. Nikolaeva, Denis A. Drozhzhin, Alexander S. Borisenko, Andrei E. Korolkov, Nikita V. Semenin, Kristina P. Galstyan, Pavel A. Kamenskikh, Vasilii N. Smirnov, Mikhail A. Aksenov, Pavel L. Sidorov, Evgeniy O. Kiktenko, Ksenia Yu. Khabarova, Aleksey K. Fedorov, Nikolay N. Kolachevsky, Ilya A. Semerikov,
- Abstract summary: We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
- Score: 56.089799129458875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Here we present the results of benchmarking of a quantum processor based on trapped $^{171}$Yb$^{+}$ ions by performing basic quantum machine learning algorithms. Specifically, we carry out a supervised binary classification of small-scale digits images, which are intentionally chosen so that they can be classified with 100% accuracy, using a quantum-enhanced Support Vector Machine algorithm with up to four qubits. In our work, we specifically consider different types of quantum encodings of the dataset and different levels of transpilation optimizations for the corresponding quantum circuits. For each quantum encoding, we obtain a classifier that is of 100% accuracy on both training and test sets, which demonstrates that the quantum processor can correctly solve the basic classification task considered. As we expect, with the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
Related papers
- Quantum machine learning for multiclass classification beyond kernel methods [21.23851138896271]
We propose a quantum algorithm that demonstrates that quantum kernel methods enhance the efficiency of multiclass classification in real-world applications.
The results from quantum simulations reveal that the quantum algorithm outperforms its classical counterpart in handling six real-world classification problems.
arXiv Detail & Related papers (2024-11-05T08:58:30Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quadratic speed-ups in quantum kernelized binary classification [1.3812010983144802]
Several quantum machine learning algorithms that use quantum kernels as a measure of similarities between data have emerged to perform binary classification on datasets encoded as quantum states.
We propose new quantum circuits for the QKCs in which the number of qubits is reduced by one, and the circuit depth is reduced linearly with respect to the number of sample data.
We verify the quadratic speed-up over previous methods through numerical simulations on the Iris dataset.
arXiv Detail & Related papers (2024-03-26T07:39:48Z) - Realization of quantum algorithms with qudits [0.7892577704654171]
We review several ideas indicating how multilevel quantum systems, also known as qudits, can be used for efficient realization of quantum algorithms.
We focus on techniques of leveraging qudits for simplifying decomposition of multiqubit gates, and for compressing quantum information by encoding multiple qubits in a single qudit.
These theoretical schemes can be implemented with quantum computing platforms of various nature, such as trapped ions, neutral atoms, superconducting junctions, and quantum light.
arXiv Detail & Related papers (2023-11-20T18:34:19Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Quantum algorithm for neural network enhanced multi-class parallel
classification [0.3314882635954752]
The proposed algorithm has a higher classification accuracy, faster convergence and higher expression ability.
For a classification task of $L$-class, the analysis shows that the space and time complexity of the quantum circuit are $O(L*logL)$ and $O(logL)$, respectively.
arXiv Detail & Related papers (2022-03-08T14:06:13Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
We show a possible solution to facial expression recognition using a quantum machine learning approach.
We define a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states.
arXiv Detail & Related papers (2021-02-09T13:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z) - Quantum ensemble of trained classifiers [2.048335092363436]
A quantum computer is capable of representing an exponentially large set of states, according to the number of qubits available.
Quantum machine learning explores the potential of quantum computing to enhance machine learning algorithms.
arXiv Detail & Related papers (2020-07-18T01:01:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.