Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization
- URL: http://arxiv.org/abs/2203.15386v1
- Date: Tue, 29 Mar 2022 09:26:22 GMT
- Title: Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization
- Authors: Xi Lin, Zhiyuan Yang, Qingfu Zhang
- Abstract summary: Multiobjective optimization (MOCO) problems can be found in many real-world applications.
We develop a learning-based approach to approximate the whole Pareto set for a given MOCO problem without further search procedure.
Our proposed method significantly outperforms some other methods on the multiobjective traveling salesman problem, multiconditioned vehicle routing problem and multi knapsack problem in terms of solution quality, speed, and model efficiency.
- Score: 6.091096843566857
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiobjective combinatorial optimization (MOCO) problems can be found in
many real-world applications. However, exactly solving these problems would be
very challenging, particularly when they are NP-hard. Many handcrafted
heuristic methods have been proposed to tackle different MOCO problems over the
past decades. In this work, we generalize the idea of neural combinatorial
optimization, and develop a learning-based approach to approximate the whole
Pareto set for a given MOCO problem without further search procedure. We
propose a single preference-conditioned model to directly generate approximate
Pareto solutions for any trade-off preference, and design an efficient
multiobjective reinforcement learning algorithm to train this model. Our
proposed method can be treated as a learning-based extension for the
widely-used decomposition-based multiobjective evolutionary algorithm (MOEA/D).
It uses a single model to accommodate all the possible preferences, whereas
other methods use a finite number of solution to approximate the Pareto set.
Experimental results show that our proposed method significantly outperforms
some other methods on the multiobjective traveling salesman problem,
multiobjective vehicle routing problem and multiobjective knapsack problem in
terms of solution quality, speed, and model efficiency.
Related papers
- Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
Solving multi-objective optimization problems for large deep neural networks is a challenging task due to the complexity of the loss landscape and the expensive computational cost.
We propose a practical and scalable approach to solve this problem via mixture of experts (MoE) based model fusion.
By ensembling the weights of specialized single-task models, the MoE module can effectively capture the trade-offs between multiple objectives.
arXiv Detail & Related papers (2024-06-14T07:16:18Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Pareto Set Learning for Expensive Multi-Objective Optimization [5.419608513284392]
Expensive multi-objective optimization problems can be found in many real-world applications.
This paper develops a novel learning-based method to approximate the whole Pareto set for MOBO.
arXiv Detail & Related papers (2022-10-16T09:41:54Z) - Scalable Uni-directional Pareto Optimality for Multi-Task Learning with
Constraints [4.4044968357361745]
We propose a scalable MOO solver for Multi-Objective (MOO) problems, including support for optimization under constraints.
An important application of this is to estimate high-dimensional runtime for neural classification tasks.
arXiv Detail & Related papers (2021-10-28T21:35:59Z) - MODRL/D-EL: Multiobjective Deep Reinforcement Learning with Evolutionary
Learning for Multiobjective Optimization [10.614594804236893]
This paper proposes a multiobjective deep reinforcement learning with evolutionary learning algorithm for a typical complex problem called the multiobjective vehicle routing problem with time windows.
The experimental results on MO-VRPTW instances demonstrate the superiority of the proposed algorithm over other learning-based and iterative-based approaches.
arXiv Detail & Related papers (2021-07-16T15:22:20Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
We study the problem of single policy MORL, which learns an optimal policy given the preference of objectives.
Existing methods require strong assumptions such as exact knowledge of the multi-objective decision process.
We propose a new algorithm called model-based envelop value (EVI) which generalizes the enveloped multi-objective $Q$-learning algorithm.
arXiv Detail & Related papers (2020-11-19T22:35:31Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
We consider optimization problems, where multiple differentiable losses have to be minimized.
The presented method computes descent direction in every iteration to guarantee equal relative decrease of objective functions.
arXiv Detail & Related papers (2020-07-14T09:50:33Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
We present a modified Cross-Entropy Method (CEM) that uses a masked auto-regressive neural network for modeling uniform distributions over the solution space.
Our algorithm is able to express complicated solution spaces, thus allowing it to track a variety of different solution regions.
arXiv Detail & Related papers (2020-02-17T20:21:20Z) - MODRL/D-AM: Multiobjective Deep Reinforcement Learning Algorithm Using
Decomposition and Attention Model for Multiobjective Optimization [15.235261981563523]
This paper proposes a multiobjective deep reinforcement learning method to solve multiobjective optimization problem.
In our method, each subproblem is solved by an attention model, which can exploit the structure features as well as node features of input nodes.
arXiv Detail & Related papers (2020-02-13T12:59:39Z) - Pareto Multi-Task Learning [53.90732663046125]
Multi-task learning is a powerful method for solving multiple correlated tasks simultaneously.
It is often impossible to find one single solution to optimize all the tasks, since different tasks might conflict with each other.
Recently, a novel method is proposed to find one single Pareto optimal solution with good trade-off among different tasks by casting multi-task learning as multiobjective optimization.
arXiv Detail & Related papers (2019-12-30T08:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.