MODRL/D-AM: Multiobjective Deep Reinforcement Learning Algorithm Using
Decomposition and Attention Model for Multiobjective Optimization
- URL: http://arxiv.org/abs/2002.05484v1
- Date: Thu, 13 Feb 2020 12:59:39 GMT
- Title: MODRL/D-AM: Multiobjective Deep Reinforcement Learning Algorithm Using
Decomposition and Attention Model for Multiobjective Optimization
- Authors: Hong Wu, Jiahai Wang and Zizhen Zhang
- Abstract summary: This paper proposes a multiobjective deep reinforcement learning method to solve multiobjective optimization problem.
In our method, each subproblem is solved by an attention model, which can exploit the structure features as well as node features of input nodes.
- Score: 15.235261981563523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, a deep reinforcement learning method is proposed to solve
multiobjective optimization problem. In this method, the multiobjective
optimization problem is decomposed to a number of single-objective optimization
subproblems and all the subproblems are optimized in a collaborative manner.
Each subproblem is modeled with a pointer network and the model is trained with
reinforcement learning. However, when pointer network extracts the features of
an instance, it ignores the underlying structure information of the input
nodes. Thus, this paper proposes a multiobjective deep reinforcement learning
method using decomposition and attention model to solve multiobjective
optimization problem. In our method, each subproblem is solved by an attention
model, which can exploit the structure features as well as node features of
input nodes. The experiment results on multiobjective travelling salesman
problem show the proposed algorithm achieves better performance compared with
the previous method.
Related papers
- UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - A First-Order Multi-Gradient Algorithm for Multi-Objective Bi-Level Optimization [7.097069899573992]
We study the Multi-Objective Bi-Level Optimization (MOBLO) problem.
Existing gradient-based MOBLO algorithms need to compute the Hessian matrix.
We propose an efficient first-order multi-gradient method for MOBLO, called FORUM.
arXiv Detail & Related papers (2024-01-17T15:03:37Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
Multiobjective optimization (MOCO) problems can be found in many real-world applications.
We develop a learning-based approach to approximate the whole Pareto set for a given MOCO problem without further search procedure.
Our proposed method significantly outperforms some other methods on the multiobjective traveling salesman problem, multiconditioned vehicle routing problem and multi knapsack problem in terms of solution quality, speed, and model efficiency.
arXiv Detail & Related papers (2022-03-29T09:26:22Z) - MODRL/D-EL: Multiobjective Deep Reinforcement Learning with Evolutionary
Learning for Multiobjective Optimization [10.614594804236893]
This paper proposes a multiobjective deep reinforcement learning with evolutionary learning algorithm for a typical complex problem called the multiobjective vehicle routing problem with time windows.
The experimental results on MO-VRPTW instances demonstrate the superiority of the proposed algorithm over other learning-based and iterative-based approaches.
arXiv Detail & Related papers (2021-07-16T15:22:20Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
We consider optimization problems, where multiple differentiable losses have to be minimized.
The presented method computes descent direction in every iteration to guarantee equal relative decrease of objective functions.
arXiv Detail & Related papers (2020-07-14T09:50:33Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - A Decomposition-based Large-scale Multi-modal Multi-objective
Optimization Algorithm [9.584279193016522]
We propose an efficient multi-modal multi-objective optimization algorithm based on the widely used MOEA/D algorithm.
Experimental results show that our proposed algorithm can effectively preserve the diversity of solutions in the decision space.
arXiv Detail & Related papers (2020-04-21T09:18:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.