Physics-informed deep-learning applications to experimental fluid
mechanics
- URL: http://arxiv.org/abs/2203.15402v2
- Date: Thu, 22 Feb 2024 17:37:31 GMT
- Title: Physics-informed deep-learning applications to experimental fluid
mechanics
- Authors: Hamidreza Eivazi, Yuning Wang and Ricardo Vinuesa
- Abstract summary: High-resolution reconstruction of flow-field data from low-resolution and noisy measurements is of interest in experimental fluid mechanics.
Deep-learning approaches have been shown suitable for such super-resolution tasks.
In this study, we apply physics-informed neural networks (PINNs) for super-resolution of flow-field data in time and space.
- Score: 2.992602379681373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-resolution reconstruction of flow-field data from low-resolution and
noisy measurements is of interest due to the prevalence of such problems in
experimental fluid mechanics, where the measurement data are in general sparse,
incomplete and noisy. Deep-learning approaches have been shown suitable for
such super-resolution tasks. However, a high number of high-resolution examples
is needed, which may not be available for many cases. Moreover, the obtained
predictions may lack in complying with the physical principles, e.g. mass and
momentum conservation. Physics-informed deep learning provides frameworks for
integrating data and physical laws for learning. In this study, we apply
physics-informed neural networks (PINNs) for super-resolution of flow-field
data both in time and space from a limited set of noisy measurements without
having any high-resolution reference data. Our objective is to obtain a
continuous solution of the problem, providing a physically-consistent
prediction at any point in the solution domain. We demonstrate the
applicability of PINNs for the super-resolution of flow-field data in time and
space through three canonical cases: Burgers' equation, two-dimensional vortex
shedding behind a circular cylinder and the minimal turbulent channel flow. The
robustness of the models is also investigated by adding synthetic Gaussian
noise. Furthermore, we show the capabilities of PINNs to improve the resolution
and reduce the noise in a real experimental dataset consisting of
hot-wire-anemometry measurements. Our results show the adequate capabilities of
PINNs in the context of data augmentation for experiments in fluid mechanics.
Related papers
- Inpainting Computational Fluid Dynamics with Deep Learning [8.397730500554047]
An effective fluid data completion method reduces the required number of sensors in a fluid dynamics experiment.
The ill-posed nature of the fluid data completion problem makes it prohibitively difficult to obtain a theoretical solution.
We employ the vector quantization technique to map both complete and incomplete fluid data spaces onto discrete-valued lower-dimensional representations.
arXiv Detail & Related papers (2024-02-27T03:44:55Z) - Grad-Shafranov equilibria via data-free physics informed neural networks [0.0]
We show that PINNs can accurately and effectively solve the Grad-Shafranov equation with several different boundary conditions.
We introduce a parameterized PINN framework, expanding the input space to include variables such as pressure, aspect ratio, elongation, and triangularity.
arXiv Detail & Related papers (2023-11-22T16:08:38Z) - Filtered Partial Differential Equations: a robust surrogate constraint in physics-informed deep learning framework [1.220743263007369]
We propose a surrogate constraint (filtered PDE, FPDE in short) of the original physical equations to reduce the influence of noisy and sparse observation data.
In the noise and sparsity experiment, the proposed FPDE models have better robustness than the conventional PDE models.
For combining real-world experiment data into physics-informed training, the proposed FPDE constraint is useful.
arXiv Detail & Related papers (2023-11-07T07:38:23Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Super-resolution GANs of randomly-seeded fields [68.8204255655161]
We propose a novel super-resolution generative adversarial network (GAN) framework to estimate field quantities from random sparse sensors.
The algorithm exploits random sampling to provide incomplete views of the high-resolution underlying distributions.
The proposed technique is tested on synthetic databases of fluid flow simulations, ocean surface temperature distributions measurements, and particle image velocimetry data.
arXiv Detail & Related papers (2022-02-23T18:57:53Z) - Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS [1.6274397329511197]
This paper presents a novel methodology for permeability prediction from micro-CT scans of geological rock samples.
The training data set for CNNs dedicated to permeability prediction consists of permeability labels that are typically generated by classical lattice Boltzmann methods (LBM)
We instead perform direct numerical simulation (DNS) by solving the stationary Stokes equation in an efficient and distributed-parallel manner.
arXiv Detail & Related papers (2021-09-04T08:43:19Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z) - Physics-informed deep learning for incompressible laminar flows [13.084113582897965]
We propose a mixed-variable scheme of physics-informed neural network (PINN) for fluid dynamics.
A parametric study indicates that the mixed-variable scheme can improve the PINN trainability and the solution accuracy.
arXiv Detail & Related papers (2020-02-24T21:51:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.