Inpainting Computational Fluid Dynamics with Deep Learning
- URL: http://arxiv.org/abs/2402.17185v1
- Date: Tue, 27 Feb 2024 03:44:55 GMT
- Title: Inpainting Computational Fluid Dynamics with Deep Learning
- Authors: Dule Shu, Wilson Zhen, Zijie Li, Amir Barati Farimani
- Abstract summary: An effective fluid data completion method reduces the required number of sensors in a fluid dynamics experiment.
The ill-posed nature of the fluid data completion problem makes it prohibitively difficult to obtain a theoretical solution.
We employ the vector quantization technique to map both complete and incomplete fluid data spaces onto discrete-valued lower-dimensional representations.
- Score: 8.397730500554047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fluid data completion is a research problem with high potential benefit for
both experimental and computational fluid dynamics. An effective fluid data
completion method reduces the required number of sensors in a fluid dynamics
experiment, and allows a coarser and more adaptive mesh for a Computational
Fluid Dynamics (CFD) simulation. However, the ill-posed nature of the fluid
data completion problem makes it prohibitively difficult to obtain a
theoretical solution and presents high numerical uncertainty and instability
for a data-driven approach (e.g., a neural network model). To address these
challenges, we leverage recent advancements in computer vision, employing the
vector quantization technique to map both complete and incomplete fluid data
spaces onto discrete-valued lower-dimensional representations via a two-stage
learning procedure. We demonstrated the effectiveness of our approach on
Kolmogorov flow data (Reynolds number: 1000) occluded by masks of different
size and arrangement. Experimental results show that our proposed model
consistently outperforms benchmark models under different occlusion settings in
terms of point-wise reconstruction accuracy as well as turbulent energy
spectrum and vorticity distribution.
Related papers
- Learning Pore-scale Multi-phase Flow from Experimental Data with Graph Neural Network [2.2101344151283944]
Current numerical models are often incapable of accurately capturing the complex pore-scale physics observed in experiments.
We propose a graph neural network-based approach and directly learn pore-scale fluid flow using micro-CT experimental data.
arXiv Detail & Related papers (2024-11-21T15:01:17Z) - Graph Neural Networks and Differential Equations: A hybrid approach for data assimilation of fluid flows [0.0]
This study presents a novel hybrid approach that combines Graph Neural Networks (GNNs) with Reynolds-Averaged Navier Stokes (RANS) equations.
The results demonstrate significant improvements in the accuracy of the reconstructed mean flow compared to purely data-driven models.
arXiv Detail & Related papers (2024-11-14T14:31:52Z) - DiffFluid: Plain Diffusion Models are Effective Predictors of Flow Dynamics [16.660107496540146]
We showcase the plain diffusion models with Transformers as effective predictors of fluid dynamics under various working conditions.
Our approach formulates the prediction of flow dynamics as the image translation problem and accordingly leverage the plain diffusion model to tackle the problem.
arXiv Detail & Related papers (2024-09-20T17:19:03Z) - Coupling Machine Learning Local Predictions with a Computational Fluid Dynamics Solver to Accelerate Transient Buoyant Plume Simulations [0.0]
This study presents a versatile and scalable hybrid methodology, combining CFD and machine learning.
The objective was to leverage local features to predict the temporal changes in the pressure field in comparable scenarios.
Pressure estimates were employed as initial values to accelerate the pressure-velocity coupling procedure.
arXiv Detail & Related papers (2024-09-11T10:38:30Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Physics-informed deep-learning applications to experimental fluid
mechanics [2.992602379681373]
High-resolution reconstruction of flow-field data from low-resolution and noisy measurements is of interest in experimental fluid mechanics.
Deep-learning approaches have been shown suitable for such super-resolution tasks.
In this study, we apply physics-informed neural networks (PINNs) for super-resolution of flow-field data in time and space.
arXiv Detail & Related papers (2022-03-29T09:58:30Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.