論文の概要: Neural representation of a time optimal, constant acceleration
rendezvous
- arxiv url: http://arxiv.org/abs/2203.15490v1
- Date: Tue, 29 Mar 2022 12:40:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-30 22:22:45.294750
- Title: Neural representation of a time optimal, constant acceleration
rendezvous
- Title(参考訳): 時間最適定数加速度ランデブーの神経表現
- Authors: Dario Izzo and Sebastien Origer
- Abstract要約: 我々は、最適政策(すなわち最適な推力方向)と値関数(すなわち飛行時間)の両方を表現するために、時間最適で一定加速度の低推力ランデブーをニューラルネットワークで訓練する。
あらゆるケースにおいて、アキュラシーはランデブーと飛行予測の時間に成功する。
- 参考スコア(独自算出の注目度): 10.191757341020216
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We train neural models to represent both the optimal policy (i.e. the optimal
thrust direction) and the value function (i.e. the time of flight) for a time
optimal, constant acceleration low-thrust rendezvous. In both cases we develop
and make use of the data augmentation technique we call backward generation of
optimal examples. We are thus able to produce and work with large dataset and
to fully exploit the benefit of employing a deep learning framework. We
achieve, in all cases, accuracies resulting in successful rendezvous (simulated
following the learned policy) and time of flight predictions (using the learned
value function). We find that residuals as small as a few m/s, thus well within
the possibility of a spacecraft navigation $\Delta V$ budget, are achievable
for the velocity at rendezvous. We also find that, on average, the absolute
error to predict the optimal time of flight to rendezvous from any orbit in the
asteroid belt to an Earth-like orbit is small (less than 4\%) and thus also of
interest for practical uses, for example, during preliminary mission design
phases.
- Abstract(参考訳): 我々は、最適政策(すなわち最適な推力方向)と値関数(すなわち飛行時間)の両方を表現するために、時間最適で一定加速度の低推力ランデブーをニューラルネットワークで訓練する。
いずれの場合も、データ拡張技術を開発し、利用し、最適な例を後方に生成する。
これにより、大規模なデータセットを作成して作業し、ディープラーニングフレームワークを使用するメリットを完全に活用することができます。
いずれの場合も、ランデブー(学習した方針に従ってシミュレーションされる)と飛行予測(学習された価値関数を使用して)を成功させる確率を達成する。
我々は、残りが数m/sほど小さく、そのため宇宙船の航法予算である\delta v$ がランデブーの速度で達成可能であることを発見した。
また、平均して、小惑星帯の任意の軌道から地球に似た軌道にランデブーする最適飛行時間を予測する絶対誤差は(4\%未満)小さく、例えば予備ミッション設計段階での実用的利用にも興味がある。
関連論文リスト
- Truncating Trajectories in Monte Carlo Policy Evaluation: an Adaptive Approach [51.76826149868971]
モンテカルロシミュレーションによる政策評価は多くのMC強化学習(RL)アルゴリズムの中核にある。
本研究では,異なる長さの軌跡を用いた回帰推定器の平均二乗誤差のサロゲートとして品質指標を提案する。
本稿では,Robust and Iterative Data Collection Strategy Optimization (RIDO) という適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-17T11:47:56Z) - Revisiting Space Mission Planning: A Reinforcement Learning-Guided Approach for Multi-Debris Rendezvous [15.699822139827916]
目的は、与えられたすべての破片を訪問して、ミッション全体のランデブーを最小限に抑えるシーケンスを最適化することである。
ニューラルネットワーク(NN)ポリシーが開発され、さまざまなデブリフィールドを持つシミュレーションされた宇宙ミッションで訓練される。
強化学習アプローチは計画効率を著しく向上させる。
論文 参考訳(メタデータ) (2024-09-25T12:50:01Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Instance-Conditional Timescales of Decay for Non-Stationary Learning [11.90763787610444]
スローコンセプトドリフトは、機械学習システムにおいて、ユビキタスだが未研究の課題である。
大規模トレーニングウィンドウ上でのインスタンスの重要さのバランスをとるための最適化型アプローチを提案する。
9年間にわたる39万枚の写真からなる大規模な実世界のデータセットの実験では、精度が15%まで向上した。
論文 参考訳(メタデータ) (2022-12-12T14:16:26Z) - Globally Optimal Event-Based Divergence Estimation for Ventral Landing [55.29096494880328]
イベントセンシングはバイオインスパイアされた飛行誘導と制御システムの主要なコンポーネントである。
本研究では, イベントカメラを用いた腹側着陸時の表面との接触時間予測について検討する。
これは、着陸時に発生する事象の流れから放射光の流れの速度である発散(逆TTC)を推定することで達成される。
我々のコアコントリビューションは、イベントベースの発散推定のための新しいコントラスト最大化定式化と、コントラストを正確に最大化し、最適な発散値を求めるブランチ・アンド・バウンドアルゴリズムである。
論文 参考訳(メタデータ) (2022-09-27T06:00:52Z) - Time-Optimal Planning for Quadrotor Waypoint Flight [50.016821506107455]
立方体の作動限界における時間-最適軌道の計画は未解決の問題である。
四重項のアクチュエータポテンシャルをフル活用する解を提案する。
我々は、世界最大規模のモーションキャプチャーシステムにおいて、実世界の飛行における我々の方法を検証する。
論文 参考訳(メタデータ) (2021-08-10T09:26:43Z) - Autonomous Drone Racing with Deep Reinforcement Learning [39.757652701917166]
ドローンレースのような多くのロボットタスクにおいて、ゴールはできるだけ速くコースポイントを移動することである。
重要な課題は、事前に通過するウェイポイントの完全な知識を想定して解決される最小時間軌道を計画することです。
本研究では,クワッドロータの最小時間軌道生成法を提案する。
論文 参考訳(メタデータ) (2021-03-15T18:05:49Z) - FLOT: Scene Flow on Point Clouds Guided by Optimal Transport [82.86743909483312]
本稿では,点雲上のシーンフローを推定するFLOT法を提案する。
グラフマッチングに関する最近の研究に触発されて、最適な輸送手段からツールを借りてこれらの対応を見つける方法を構築した。
私たちの主な発見は、FLOTは、合成および実世界のデータセット上で、最も優れた既存の方法と同様に、実行可能であることです。
論文 参考訳(メタデータ) (2020-07-22T00:15:30Z) - Real-Time Optimal Guidance and Control for Interplanetary Transfers
Using Deep Networks [10.191757341020216]
最適な例の模倣学習は、ネットワークトレーニングパラダイムとして使用される。
G&CNETは、宇宙船の最適誘導制御システムの実装をオンボードでリアルタイムに行うのに適している。
論文 参考訳(メタデータ) (2020-02-20T23:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。