論文の概要: Improving the Learnability of Machine Learning APIs by Semi-Automated
API Wrapping
- arxiv url: http://arxiv.org/abs/2203.15491v1
- Date: Tue, 29 Mar 2022 12:42:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-30 22:07:55.200092
- Title: Improving the Learnability of Machine Learning APIs by Semi-Automated
API Wrapping
- Title(参考訳): 半自動APIラッピングによる機械学習APIの学習性向上
- Authors: Lars Reimann, G\"unter Kniesel-W\"unsche
- Abstract要約: 学習や使用が容易なAPIを作成するという課題に,特に初心者が対処しています。
広く使われているML API skl のこの問題について検討する。
クライアントプログラムに影響を与えることなく、排除できるAPIの未使用部分と明らかに役に立たない部分を特定します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A major hurdle for students and professional software developers who want to
enter the world of machine learning (ML), is mastering not just the scientific
background but also the available ML APIs. Therefore, we address the challenge
of creating APIs that are easy to learn and use, especially by novices.
However, it is not clear how this can be achieved without compromising
expressiveness. We investigate this problem for \skl{}, a widely used ML API.
In this paper, we analyze its use by the Kaggle community, identifying unused
and apparently useless parts of the API that can be eliminated without
affecting client programs. In addition, we discuss usability issues in the
remaining parts, propose related design improvements and show how they can be
implemented by semi-automated wrapping of the existing third-party API.
- Abstract(参考訳): 機械学習(ML)の世界に参入したい学生やプロのソフトウェア開発者にとって、大きなハードルは、科学的なバックグラウンドだけでなく、利用可能なML APIも習得することだ。
したがって、学習や使用が容易なAPI、特に初心者によるAPI作成の課題に対処する。
しかし, 表現性を損なうことなく, どのように実現できるかは明らかでない。
本稿では,広く使用されているML APIである \skl{} について検討する。
本稿では,kaggleコミュニティによる利用状況を分析し,クライアントプログラムに影響を与えずに削除できるapiの未使用で明らかに役に立たない部分を特定する。
さらに、残りの部分におけるユーザビリティの問題について議論し、関連する設計改善を提案し、既存のサードパーティAPIを半自動でラップして実装する方法を示す。
関連論文リスト
- Demystifying Application Programming Interfaces (APIs): Unlocking the Power of Large Language Models and Other Web-based AI Services in Social Work Research [0.0]
アプリケーションプログラミングインタフェース(API)は、大規模言語モデル(LLM)やその他のAIサービスといった高度な技術を活用することを目的とした、ソーシャルワーク研究者にとって不可欠なツールである。
本稿では、APIをデミステレーションし、研究方法論をいかに拡張できるかを説明する。
実際のコード例は、構造化されていないテキストからデータを抽出するなど、LLMが特別なサービスにアクセスするためのAPIコードを生成する方法を示している。
論文 参考訳(メタデータ) (2024-10-26T16:07:12Z) - A Systematic Evaluation of Large Code Models in API Suggestion: When, Which, and How [53.65636914757381]
API提案は、現代のソフトウェア開発において重要なタスクである。
大規模コードモデル(LCM)の最近の進歩は、API提案タスクにおいて有望であることを示している。
論文 参考訳(メタデータ) (2024-09-20T03:12:35Z) - WorldAPIs: The World Is Worth How Many APIs? A Thought Experiment [49.00213183302225]
本稿では, wikiHow 命令をエージェントの配置ポリシーに基礎付けることで, 新たな API を創出するフレームワークを提案する。
大規模言語モデル (LLM) の具体化計画における近年の成功に触発されて, GPT-4 のステアリングを目的とした数発のプロンプトを提案する。
論文 参考訳(メタデータ) (2024-07-10T15:52:44Z) - A Solution-based LLM API-using Methodology for Academic Information Seeking [49.096714812902576]
SoAyは学術情報検索のためのソリューションベースのLLM API利用方法論である。
ソリューションが事前に構築されたAPI呼び出しシーケンスである場合、推論メソッドとしてソリューションを備えたコードを使用する。
その結果、最先端のLLM APIベースのベースラインと比較して34.58-75.99%のパフォーマンス改善が見られた。
論文 参考訳(メタデータ) (2024-05-24T02:44:14Z) - SpeCrawler: Generating OpenAPI Specifications from API Documentation
Using Large Language Models [8.372941103284774]
SpeCrawlerは、さまざまなAPIドキュメントからOpenAPI仕様を生成する包括的なシステムである。
本稿では,実証的証拠とケーススタディに支えられたSpeCrawlerの方法論について考察する。
論文 参考訳(メタデータ) (2024-02-18T15:33:24Z) - APICom: Automatic API Completion via Prompt Learning and Adversarial
Training-based Data Augmentation [6.029137544885093]
APIレコメンデーションは、開発者が多数の候補APIの中で必要なAPIを見つけるのを支援するプロセスである。
これまでの研究では、主にAPIレコメンデーションをレコメンデーションタスクとしてモデル化していた。
ニューラルネットワーク翻訳研究領域に動機づけられたこの問題を生成タスクとしてモデル化することができる。
提案手法は,プロンプト学習に基づく新しいアプローチAPIComを提案し,そのプロンプトに応じてクエリに関連するAPIを生成する。
論文 参考訳(メタデータ) (2023-09-13T15:31:50Z) - ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world
APIs [104.37772295581088]
オープンソースの大規模言語モデル(LLM)、例えばLLaMAは、ツール使用能力に大きく制限されている。
データ構築、モデルトレーニング、評価を含む汎用ツールであるToolLLMを紹介する。
ツール使用のためのインストラクションチューニングフレームワークであるToolBenchを,ChatGPTを使って自動構築する。
論文 参考訳(メタデータ) (2023-07-31T15:56:53Z) - Private-Library-Oriented Code Generation with Large Language Models [52.73999698194344]
本稿では,大規模言語モデル(LLM)をプライベートライブラリのコード生成に活用することに焦点を当てる。
プログラマがプライベートコードを書く過程をエミュレートする新しいフレームワークを提案する。
TorchDataEval、TorchDataComplexEval、MonkeyEval、BeatNumEvalの4つのプライベートライブラリベンチマークを作成しました。
論文 参考訳(メタデータ) (2023-07-28T07:43:13Z) - API-Bank: A Comprehensive Benchmark for Tool-Augmented LLMs [84.45284695156771]
API-Bankは、ツール強化された大規模言語モデルのための画期的なベンチマークである。
73のAPIツールからなる実行評価システムを開発した。
我々は、1,000の異なるドメインにまたがる2,138のAPIから1,888のツール使用対話を含む総合的なトレーニングセットを構築した。
論文 参考訳(メタデータ) (2023-04-14T14:05:32Z) - HAPI: A Large-scale Longitudinal Dataset of Commercial ML API
Predictions [35.48276161473216]
商用ML APIアプリケーションの1,761,417インスタンスの時系列データセットであるHAPIを提示する。
各インスタンスは、APIに対するクエリ入力と、APIの出力予測/アノテーションと信頼性スコアで構成されている。
論文 参考訳(メタデータ) (2022-09-18T01:52:16Z) - On the Effectiveness of Pretrained Models for API Learning [8.788509467038743]
開発者は、Excelファイルのパース、行ごとのテキストファイルの読み書きなど、特定の機能を実装するためにAPIを使うことが多い。
開発者は、より高速でクリーンな方法でアプリケーションを構築するために、自然言語クエリに基づいた自動API使用シーケンス生成の恩恵を受けることができる。
既存のアプローチでは、クエリが与えられたAPIシーケンスの検索や、RNNベースのエンコーダデコーダを使用してAPIシーケンスを生成するために、情報検索モデルを使用している。
論文 参考訳(メタデータ) (2022-04-05T20:33:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。