論文の概要: Demystifying Application Programming Interfaces (APIs): Unlocking the Power of Large Language Models and Other Web-based AI Services in Social Work Research
- arxiv url: http://arxiv.org/abs/2410.20211v1
- Date: Sat, 26 Oct 2024 16:07:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:16:29.606864
- Title: Demystifying Application Programming Interfaces (APIs): Unlocking the Power of Large Language Models and Other Web-based AI Services in Social Work Research
- Title(参考訳): API(Demystifying Application Programming Interfaces) - ソーシャルワーク研究における大規模言語モデルやその他のWebベースのAIサービスの力を解き放つ
- Authors: Brian E. Perron, Hui Luan, Zia Qi, Bryan G. Victor, Kavin Goyal,
- Abstract要約: アプリケーションプログラミングインタフェース(API)は、大規模言語モデル(LLM)やその他のAIサービスといった高度な技術を活用することを目的とした、ソーシャルワーク研究者にとって不可欠なツールである。
本稿では、APIをデミステレーションし、研究方法論をいかに拡張できるかを説明する。
実際のコード例は、構造化されていないテキストからデータを抽出するなど、LLMが特別なサービスにアクセスするためのAPIコードを生成する方法を示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Application Programming Interfaces (APIs) are essential tools for social work researchers aiming to harness advanced technologies like Large Language Models (LLMs) and other AI services. This paper demystifies APIs and illustrates how they can enhance research methodologies. It provides an overview of API functionality and integration into research workflows, addressing common barriers for those without programming experience. The paper offers a technical breakdown of code and procedures for using APIs, focusing on connecting to LLMs and leveraging them to facilitate API connections. Practical code examples demonstrate how LLMs can generate API code for accessing specialized services, such as extracting data from unstructured text. Emphasizing data security, privacy considerations, and ethical concerns, the paper highlights the importance of careful data handling when using APIs. By equipping researchers with these tools and knowledge, the paper aims to expand the impact of social work research through the effective incorporation of AI technologies.
- Abstract(参考訳): アプリケーションプログラミングインターフェース(API)は、大規模言語モデル(LLM)やその他のAIサービスといった高度な技術を活用することを目的とした、ソーシャルワーク研究者にとって不可欠なツールである。
本稿では、APIをデミステレーションし、研究方法論をいかに拡張できるかを説明する。
これは、API機能の概要と研究ワークフローへの統合を提供し、プログラミング経験のない人にとって共通の障壁に対処する。
この記事では、LLMへの接続とAPI接続を容易にするためにそれらを活用することに焦点を当て、APIを使用するためのコードと手順の技術的概要を提供する。
実際のコード例は、構造化されていないテキストからデータを抽出するなど、LLMが特別なサービスにアクセスするためのAPIコードを生成する方法を示している。
データセキュリティ、プライバシの考慮、倫理的懸念を強調する上で、この論文は、APIを使用する際の注意深いデータ処理の重要性を強調している。
これらのツールと知識を研究者に提供することで、AI技術の効果的な導入を通じて、社会労働研究の影響を拡大することを目指している。
関連論文リスト
- FANTAstic SEquences and Where to Find Them: Faithful and Efficient API Call Generation through State-tracked Constrained Decoding and Reranking [57.53742155914176]
APIコール生成は、大規模言語モデルのツール使用能力の基盤となっている。
既存の教師付きおよびコンテキスト内学習アプローチは、高いトレーニングコスト、低いデータ効率、APIドキュメントとユーザの要求に反する生成APIコールに悩まされる。
本稿では,これらの制約に対処するため,FANTASEと呼ばれる出力側最適化手法を提案する。
論文 参考訳(メタデータ) (2024-07-18T23:44:02Z) - Semantic API Alignment: Linking High-level User Goals to APIs [6.494714497852088]
既存のライブラリを使った要件エンジニアリングから実装まで,複数のステップにまたがるビジョンを提示する。
このアプローチは、セマンティックAPIアライメント(SEAL)と呼ばれ、ユーザの高レベルな目標と1つ以上のAPIの特定の機能とのギャップを埋めることを目的としています。
論文 参考訳(メタデータ) (2024-05-07T11:54:32Z) - Octopus: On-device language model for function calling of software APIs [9.78611123915888]
大きな言語モデル(LLM)は、高度なテキスト処理と生成能力のために重要な役割を果たす。
本研究は,ソフトウェアAPIの起動において,デバイス上でのLCMを活用するための新たな戦略を提案する。
論文 参考訳(メタデータ) (2024-04-02T01:29:28Z) - API-BLEND: A Comprehensive Corpora for Training and Benchmarking API LLMs [28.840207102132286]
既存のデータセットを特定し、キュレーションし、変換するタスクに重点を置いています。
ツール拡張LDMのトレーニングと体系的なテストを行うための大規模なコーパスであるAPI-BLENDを紹介する。
トレーニングとベンチマークの両方の目的で,API-BLENDデータセットの有用性を実証する。
論文 参考訳(メタデータ) (2024-02-23T18:30:49Z) - Lightweight Syntactic API Usage Analysis with UCov [0.0]
本稿では,ライブラリメンテナのAPIによるインタラクション理解を支援するための,新しい概念フレームワークを提案する。
これらのカスタマイズ可能なモデルにより、ライブラリメンテナはリリース前に設計を改善することができ、進化中の摩擦を減らすことができる。
我々は,これらのモデルを新しいツールUCovに実装し,多様なインタラクションスタイルを示す3つのライブラリ上でその能力を実証する。
論文 参考訳(メタデータ) (2024-02-19T10:33:41Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
大規模言語モデル(LLM)は、テキスト理解と生成において顕著な能力を示した。
各種IEサブタスクと技術の観点から,これらの作品を分類して概観する。
我々は,最も先進的な手法を実証的に分析し,LLMによるIEタスクの出現傾向を明らかにする。
論文 参考訳(メタデータ) (2023-12-29T14:25:22Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
このプロジェクトは、高度自然言語処理(NLP)技術により、オンラインC2Cマーケットプレースにおける人身売買の急激な問題に取り組む。
我々は、最小限の監督で擬似ラベル付きデータセットを生成する新しい手法を導入し、最先端のNLPモデルをトレーニングするための豊富なリソースとして機能する。
重要な貢献は、Integrated Gradientsを使った解釈可能性フレームワークの実装であり、法執行にとって重要な説明可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-11-22T02:45:01Z) - Enhancing API Documentation through BERTopic Modeling and Summarization [0.0]
本稿では、アプリケーションプログラミングインタフェース(API)ドキュメントの解釈の複雑さに焦点を当てる。
公式APIドキュメンテーションは、開発者にとって最も重要な情報ソースであるが、広くなり、ユーザフレンドリ性に欠けることが多い。
我々の新しいアプローチは、トピックモデリングと自然言語処理(NLP)にBERTopicの長所を利用して、APIドキュメントの要約を自動的に生成する。
論文 参考訳(メタデータ) (2023-08-17T15:57:12Z) - Private-Library-Oriented Code Generation with Large Language Models [52.73999698194344]
本稿では,大規模言語モデル(LLM)をプライベートライブラリのコード生成に活用することに焦点を当てる。
プログラマがプライベートコードを書く過程をエミュレートする新しいフレームワークを提案する。
TorchDataEval、TorchDataComplexEval、MonkeyEval、BeatNumEvalの4つのプライベートライブラリベンチマークを作成しました。
論文 参考訳(メタデータ) (2023-07-28T07:43:13Z) - Evaluating Embedding APIs for Information Retrieval [51.24236853841468]
ドメインの一般化と多言語検索における既存のセマンティック埋め込みAPIの機能を評価する。
BM25の結果をAPIを使って再ランク付けすることは、予算に優しいアプローチであり、英語でもっとも効果的である。
非英語検索では、再ランク付けは結果を改善するが、BM25のハイブリッドモデルは高いコストで機能する。
論文 参考訳(メタデータ) (2023-05-10T16:40:52Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
ヒューマン・インテリジェンス(HI)は、複雑なタスクを解くための基本的なスキルの組み合わせに長けている。
この機能は人工知能(AI)にとって不可欠であり、包括的なAIエージェントに組み込まれるべきである。
マルチステップで現実的なタスクを解決するために設計されたオープンソースのプラットフォームであるOpenAGIを紹介します。
論文 参考訳(メタデータ) (2023-04-10T03:55:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。