論文の概要: Collision-Free Navigation using Evolutionary Symmetrical Neural Networks
- arxiv url: http://arxiv.org/abs/2203.15522v1
- Date: Tue, 29 Mar 2022 13:02:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-30 21:46:11.475969
- Title: Collision-Free Navigation using Evolutionary Symmetrical Neural Networks
- Title(参考訳): 進化的対称性ニューラルネットワークを用いた衝突フリーナビゲーション
- Authors: Hesham M. Eraqi, Mena Nagiub, Peter Sidra
- Abstract要約: 本稿では、反応衝突回避のための進化的ニューラルネットワークを用いた以前の研究を拡張した。
我々は、対称ニューラルネットワークと呼ばれる新しい手法を提案している。
この手法は,ネットワーク重み間の制約を強制することにより,モデルの性能を向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collision avoidance systems play a vital role in reducing the number of
vehicle accidents and saving human lives. This paper extends the previous work
using evolutionary neural networks for reactive collision avoidance. We are
proposing a new method we have called symmetric neural networks. The method
improves the model's performance by enforcing constraints between the network
weights which reduces the model optimization search space and hence, learns
more accurate control of the vehicle steering for improved maneuvering. The
training and validation processes are carried out using a simulation
environment - the codebase is publicly available. Extensive experiments are
conducted to analyze the proposed method and evaluate its performance. The
method is tested in several simulated driving scenarios. In addition, we have
analyzed the effect of the rangefinder sensor resolution and noise on the
overall goal of reactive collision avoidance. Finally, we have tested the
generalization of the proposed method. The results are encouraging; the
proposed method has improved the model's learning curve for training scenarios
and generalization to the new test scenarios. Using constrained weights has
significantly improved the number of generations required for the Genetic
Algorithm optimization.
- Abstract(参考訳): 衝突回避システムは、車両事故の数を減らし、人命を救う上で重要な役割を果たす。
本稿では,反応的衝突回避のための進化的ニューラルネットワークを用いた先行研究を拡張した。
我々は対称ニューラルネットワークと呼ばれる新しい手法を提案している。
本手法は、モデル最適化探索空間を小さくするネットワーク重み間の制約を強制することにより、モデルの性能を向上させるため、車両ステアリングのより正確な制御を学習する。
トレーニングと検証はシミュレーション環境を使って行われ、コードベースは公開されている。
提案手法を解析し,その性能を評価するための実験を行った。
この方法はいくつかのシミュレートされた運転シナリオでテストされる。
さらに,反応衝突回避の全体的な目標に対するレンジファインダーセンサの分解能とノイズの影響を解析した。
最後に,提案手法の一般化を検証した。
提案手法は,学習シナリオの学習曲線を改善し,新たなテストシナリオへの一般化を行った。
制約重みの使用により、遺伝的アルゴリズムの最適化に必要な世代数を大幅に改善した。
関連論文リスト
- Neural Networks for Vehicle Routing Problem [0.0]
ルート最適化はニューラルネットワークの新たな課題と見なすことができる。
機械学習の最近の進歩は、複雑な問題に対処するための新しいツールセットを提供する。
ニューラルネットワークを応用する主な領域は、分類と回帰の領域である。
論文 参考訳(メタデータ) (2024-09-17T15:45:30Z) - Event-Aided Time-to-Collision Estimation for Autonomous Driving [28.13397992839372]
ニューロモルフィックなイベントベースカメラを用いて衝突時刻を推定する新しい手法を提案する。
提案アルゴリズムは, 事象データに適合する幾何モデルに対して, 効率的かつ高精度な2段階のアプローチで構成する。
合成データと実データの両方の実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-07-10T02:37:36Z) - Model-Based Control with Sparse Neural Dynamics [23.961218902837807]
モデル学習と予測制御を統合した新しいフレームワークを提案する。
我々は,既存の最先端手法よりもクローズドループ性能を向上できることを示す。
論文 参考訳(メタデータ) (2023-12-20T06:25:02Z) - Epistemic Modeling Uncertainty of Rapid Neural Network Ensembles for
Adaptive Learning [0.0]
新しいタイプのニューラルネットワークは、高速ニューラルネットワークパラダイムを用いて提示される。
提案したエミュレータを組み込んだニューラルネットワークは,予測精度を損なうことなく,ほぼ瞬時に学習できることが判明した。
論文 参考訳(メタデータ) (2023-09-12T22:34:34Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Controlled Sparsity via Constrained Optimization or: How I Learned to
Stop Tuning Penalties and Love Constraints [81.46143788046892]
スパースラーニングを行う際には,スパーシティのレベルを制御するタスクに焦点をあてる。
スパーシリティを誘発する罰則に基づく既存の方法は、ペナルティファクターの高価な試行錯誤チューニングを含む。
本稿では,学習目標と所望のスパーシリティ目標によって,エンドツーエンドでスペーシフィケーションをガイドする制約付き定式化を提案する。
論文 参考訳(メタデータ) (2022-08-08T21:24:20Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
論文 参考訳(メタデータ) (2021-03-11T15:21:08Z) - Ada-SISE: Adaptive Semantic Input Sampling for Efficient Explanation of
Convolutional Neural Networks [26.434705114982584]
畳み込みニューラルネットワークの効率的な解釈手法を提案する。
実験の結果,提案手法は実行時間を最大30%削減できることがわかった。
論文 参考訳(メタデータ) (2021-02-15T19:10:00Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
レジリエンスとモメンタム(AdaRem)を用いた適応勾配法を提案する。
AdaRemは、過去の1つのパラメータの変化方向が現在の勾配の方向と一致しているかどうかに応じてパラメータワイズ学習率を調整する。
本手法は,学習速度とテスト誤差の観点から,従来の適応学習率に基づくアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-10-21T14:49:00Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
本稿では, 惑星間軌道のロバスト設計における強化学習の適用について検討する。
最先端アルゴリズムのオープンソース実装が採用されている。
その結果得られた誘導制御ネットワークは、堅牢な名目的軌道と関連する閉ループ誘導法の両方を提供する。
論文 参考訳(メタデータ) (2020-08-19T15:22:15Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。