OSOP: A Multi-Stage One Shot Object Pose Estimation Framework
- URL: http://arxiv.org/abs/2203.15533v2
- Date: Wed, 30 Mar 2022 07:31:14 GMT
- Title: OSOP: A Multi-Stage One Shot Object Pose Estimation Framework
- Authors: Ivan Shugurov, Fu Li, Benjamin Busam, Slobodan Ilic
- Abstract summary: We present a novel one-shot method for object detection and 6 DoF pose estimation, that does not require training on target objects.
At test time, it takes as input a target image and a textured 3D query model.
We evaluate the method on LineMOD, Occlusion, Homebrewed, YCB-V and TLESS datasets.
- Score: 35.89334617258322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel one-shot method for object detection and 6 DoF pose
estimation, that does not require training on target objects. At test time, it
takes as input a target image and a textured 3D query model. The core idea is
to represent a 3D model with a number of 2D templates rendered from different
viewpoints. This enables CNN-based direct dense feature extraction and
matching. The object is first localized in 2D, then its approximate viewpoint
is estimated, followed by dense 2D-3D correspondence prediction. The final pose
is computed with PnP. We evaluate the method on LineMOD, Occlusion, Homebrewed,
YCB-V and TLESS datasets and report very competitive performance in comparison
to the state-of-the-art methods trained on synthetic data, even though our
method is not trained on the object models used for testing.
Related papers
- Unsupervised Learning of Category-Level 3D Pose from Object-Centric Videos [15.532504015622159]
Category-level 3D pose estimation is a fundamentally important problem in computer vision and robotics.
We tackle the problem of learning to estimate the category-level 3D pose only from casually taken object-centric videos.
arXiv Detail & Related papers (2024-07-05T09:43:05Z) - LocaliseBot: Multi-view 3D object localisation with differentiable
rendering for robot grasping [9.690844449175948]
We focus on object pose estimation.
Our approach relies on three pieces of information: multiple views of the object, the camera's parameters at those viewpoints, and 3D CAD models of objects.
We show that the estimated object pose results in 99.65% grasp accuracy with the ground truth grasp candidates.
arXiv Detail & Related papers (2023-11-14T14:27:53Z) - OnePose++: Keypoint-Free One-Shot Object Pose Estimation without CAD
Models [51.68715543630427]
OnePose relies on detecting repeatable image keypoints and is thus prone to failure on low-textured objects.
We propose a keypoint-free pose estimation pipeline to remove the need for repeatable keypoint detection.
A 2D-3D matching network directly establishes 2D-3D correspondences between the query image and the reconstructed point-cloud model.
arXiv Detail & Related papers (2023-01-18T17:47:13Z) - Neural Correspondence Field for Object Pose Estimation [67.96767010122633]
We propose a method for estimating the 6DoF pose of a rigid object with an available 3D model from a single RGB image.
Unlike classical correspondence-based methods which predict 3D object coordinates at pixels of the input image, the proposed method predicts 3D object coordinates at 3D query points sampled in the camera frustum.
arXiv Detail & Related papers (2022-07-30T01:48:23Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
We propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing.
We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set.
By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently.
arXiv Detail & Related papers (2022-06-23T16:29:53Z) - NeRF-Pose: A First-Reconstruct-Then-Regress Approach for
Weakly-supervised 6D Object Pose Estimation [44.42449011619408]
We present a weakly-supervised reconstruction-based pipeline, named NeRF-Pose, which needs only 2D object segmentation and known relative camera poses during training.
A NeRF-enabled RAN+SAC algorithm is used to estimate stable and accurate pose from the predicted correspondences.
Experiments on LineMod-Occlusion show that the proposed method has state-of-the-art accuracy in comparison to the best 6D pose estimation methods.
arXiv Detail & Related papers (2022-03-09T15:28:02Z) - Weakly Supervised Learning of Keypoints for 6D Object Pose Estimation [73.40404343241782]
We propose a weakly supervised 6D object pose estimation approach based on 2D keypoint detection.
Our approach achieves comparable performance with state-of-the-art fully supervised approaches.
arXiv Detail & Related papers (2022-03-07T16:23:47Z) - End-to-End Learning of Multi-category 3D Pose and Shape Estimation [128.881857704338]
We propose an end-to-end method that simultaneously detects 2D keypoints from an image and lifts them to 3D.
The proposed method learns both 2D detection and 3D lifting only from 2D keypoints annotations.
In addition to being end-to-end in image to 3D learning, our method also handles objects from multiple categories using a single neural network.
arXiv Detail & Related papers (2021-12-19T17:10:40Z) - Learning 2D-3D Correspondences To Solve The Blind Perspective-n-Point
Problem [98.92148855291363]
This paper proposes a deep CNN model which simultaneously solves for both 6-DoF absolute camera pose 2D--3D correspondences.
Tests on both real and simulated data have shown that our method substantially outperforms existing approaches.
arXiv Detail & Related papers (2020-03-15T04:17:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.