Hardware efficient quantum simulation of non-abelian gauge theories with
qudits on Rydberg platforms
- URL: http://arxiv.org/abs/2203.15541v2
- Date: Tue, 10 Jan 2023 10:41:54 GMT
- Title: Hardware efficient quantum simulation of non-abelian gauge theories with
qudits on Rydberg platforms
- Authors: Daniel Gonz\'alez-Cuadra, Torsten V. Zache, Jose Carrasco, Barbara
Kraus, and Peter Zoller
- Abstract summary: Non-abelian gauge theories underlie our understanding of fundamental forces in nature.
We take an approach where gauge fields, discretized in spacetime, are represented by qudits and are time-evolved in Trotter steps with multiqudit quantum gates.
We illustrate our proposal for a minimal digitization of SU(2) gauge fields, demonstrating a significant reduction in circuit depth and gate errors in comparison to a traditional qubit-based approach.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-abelian gauge theories underlie our understanding of fundamental forces
in nature, and developing tailored quantum hardware and algorithms to simulate
them is an outstanding challenge in the rapidly evolving field of quantum
simulation. Here we take an approach where gauge fields, discretized in
spacetime, are represented by qudits and are time-evolved in Trotter steps with
multiqudit quantum gates. This maps naturally and hardware-efficiently to an
architecture based on Rydberg tweezer arrays, where long-lived internal atomic
states represent qudits, and the required quantum gates are performed as
holonomic operations supported by a Rydberg blockade mechanism. We illustrate
our proposal for a minimal digitization of SU(2) gauge fields, demonstrating a
significant reduction in circuit depth and gate errors in comparison to a
traditional qubit-based approach, which puts simulations of non-abelian gauge
theories within reach of NISQ devices.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - Dual-GSE: Resource-efficient Generalized Quantum Subspace Expansion [2.3847436897240453]
A generalized quantum subspace expansion (GSE) has been proposed that is significantly robust against coherent errors.
We propose a resource-efficient implementation of GSE, which we name "Dual-GSE"
Remarkably, Dual-GSE can further simulate larger quantum systems beyond the size of available quantum hardware.
arXiv Detail & Related papers (2023-09-25T14:28:40Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Observation of higher-order topological states on a quantum computer [2.498439320062193]
We develop an approach that places NISQ hardware as a suitable platform for simulating multi-dimensional condensed matter systems.
By fully exploiting the exponentially large Hilbert space of a quantum chain, we encoded a high-dimensional model in terms of non-local many-body interactions.
We demonstrate the power of our approach by realizing, on IBM transmon-based quantum computers, higher-order topological states in up to four dimensions.
arXiv Detail & Related papers (2023-03-03T19:00:17Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum optimization within lattice gauge theory model on a quantum
simulator [7.48916170938768]
Rydberg atom arrays constitute one of the most rapidly developing arenas for quantum simulation and quantum computing.
SQA protocol can be realized easily on quantum simulation platforms such as Rydberg array D-wave annealer.
arXiv Detail & Related papers (2021-05-15T04:14:38Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - From the Jaynes-Cummings model to non-Abelian gauge theories: a guided
tour for the quantum engineer [0.0]
Non-Abelian lattice gauge theories play a central role in high energy physics, condensed matter and quantum information.
We introduce the necessary formalism in well-known Abelian gauge theories, such as the Jaynes-Cumming model.
We show that certain minimal non-Abelian lattice gauge theories can be mapped to three or four level systems.
arXiv Detail & Related papers (2020-06-01T20:53:36Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.