論文の概要: Disentangling speech from surroundings in a neural audio codec
- arxiv url: http://arxiv.org/abs/2203.15578v1
- Date: Tue, 29 Mar 2022 13:58:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-30 17:04:59.699666
- Title: Disentangling speech from surroundings in a neural audio codec
- Title(参考訳): ニューラルオーディオコーデックにおける周囲からの発話の遠ざかる
- Authors: Ahmed Omran, Neil Zeghidour, Zal\'an Borsos, F\'elix de Chaumont
Quitry, Malcolm Slaney, Marco Tagliasacchi
- Abstract要約: 本稿では,ニューラルオーディオの圧縮領域における雑音環境から音声信号を分離する手法を提案する。
本稿では,ベクトルを埋め込んだ音声波形の構造化符号化を実現するための新しいトレーニング手法を提案する。
- 参考スコア(独自算出の注目度): 17.958451380305892
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method to separate speech signals from noisy environments in the
compressed domain of a neural audio codec. We introduce a new training
procedure that allows our model to produce structured encodings of audio
waveforms given by embedding vectors, where one part of the embedding vector
represents the speech signal, and the rest represents the environment. We
achieve this by partitioning the embeddings of different input waveforms and
training the model to faithfully reconstruct audio from mixed partitions,
thereby ensuring each partition encodes a separate audio attribute. As use
cases, we demonstrate the separation of speech from background noise or from
reverberation characteristics. Our method also allows for targeted adjustments
of the audio output characteristics.
- Abstract(参考訳): 本稿では,ニューラルオーディオコーデックの圧縮領域における雑音環境から音声信号を分離する手法を提案する。
そこで本研究では,組込みベクトルが音声信号であり,残りが環境を表す,組込みベクトルによって与えられる音声波形の構造化符号化を実現するための新しい学習手順を提案する。
異なる入力波形の埋め込みを分割し、混合したパーティションから音声を忠実に再構築するためにモデルをトレーニングすることで、各パーティションが別のオーディオ属性を符号化できるようにする。
使用例として,背景雑音や残響特性からの音声の分離を示す。
また,音声出力特性を目標に調整することも可能である。
関連論文リスト
- TokenSplit: Using Discrete Speech Representations for Direct, Refined,
and Transcript-Conditioned Speech Separation and Recognition [51.565319173790314]
TokenSplit は Transformer アーキテクチャを使用するシーケンス・ツー・シーケンス・エンコーダ・デコーダモデルである。
また,本モデルでは,書き起こし条件付けの有無にかかわらず,分離の点で優れた性能を発揮することを示す。
また、自動音声認識(ASR)の性能を測定し、音声合成の音声サンプルを提供し、我々のモデルの有用性を実証する。
論文 参考訳(メタデータ) (2023-08-21T01:52:01Z) - AudioSlots: A slot-centric generative model for audio separation [26.51135156983783]
本稿では,音声領域におけるブラインド音源分離のためのスロット中心生成モデルであるAudioSlotsを提案する。
我々は、置換同変損失関数を用いて、エンド・ツー・エンドでモデルを訓練する。
We results on Libri2Mix speech separation is a proof of concept that this approach shows promise。
論文 参考訳(メタデータ) (2023-05-09T16:28:07Z) - CLIPSep: Learning Text-queried Sound Separation with Noisy Unlabeled
Videos [44.14061539284888]
そこで本稿では,未ラベルデータのみを用いて,テキスト検索による普遍的音源分離手法を提案する。
提案したCLIPSepモデルは、まずコントラッシブ言語画像事前学習(CLIP)モデルを用いて、入力クエリをクエリベクトルにエンコードする。
モデルはラベルのないビデオから抽出した画像とオーディオのペアに基づいてトレーニングされるが、テスト時にはゼロショット設定でテキスト入力でモデルをクエリすることができる。
論文 参考訳(メタデータ) (2022-12-14T07:21:45Z) - LA-VocE: Low-SNR Audio-visual Speech Enhancement using Neural Vocoders [53.30016986953206]
雑音の多い音声・視覚音声からのメルスペクトルをトランスフォーマーベースアーキテクチャにより予測する2段階のアプローチであるLA-VocEを提案する。
我々は、何千もの話者と11以上の異なる言語でフレームワークを訓練し、評価し、異なるレベルのバックグラウンドノイズや音声干渉に適応するモデルの能力について研究する。
論文 参考訳(メタデータ) (2022-11-20T15:27:55Z) - Using multiple reference audios and style embedding constraints for
speech synthesis [68.62945852651383]
提案モデルでは,複数の参照音声を用いて音声の自然さとコンテンツ品質を向上させることができる。
モデルは、スタイル類似性のABX選好テストにおいてベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2021-10-09T04:24:29Z) - Audio Captioning with Composition of Acoustic and Semantic Information [1.90365714903665]
本稿では,双方向Gated Recurrent Units (BiGRU) を用いたエンコーダ・デコーダアーキテクチャを提案する。
音声特徴抽出には、ログメルエネルギー機能、VGGish埋め込み、事前訓練されたオーディオニューラルネットワーク(PANN)埋め込みを用いる。
提案手法は,様々な評価指標において,最先端の音声キャプションモデルより優れている。
論文 参考訳(メタデータ) (2021-05-13T15:30:14Z) - End-to-End Video-To-Speech Synthesis using Generative Adversarial
Networks [54.43697805589634]
GAN(Generative Adversarial Networks)に基づくエンドツーエンドビデオ音声合成モデルを提案する。
本モデルは,生映像を入力として受信し,音声を生成するエンコーダ・デコーダアーキテクチャで構成されている。
このモデルは,グリッドなどの制約付きデータセットに対して,顕著なリアリズムで音声を再構成できることを示す。
論文 参考訳(メタデータ) (2021-04-27T17:12:30Z) - VisualVoice: Audio-Visual Speech Separation with Cross-Modal Consistency [111.55430893354769]
ビデオでは、同時の背景音や他の人間のスピーカーにもかかわらず、顔に関連するスピーチを抽出することを目的としています。
本手法は,非ラベル映像から音声-視覚音声分離とクロスモーダル話者埋め込みを共同で学習する。
音声-視覚音声分離と強化のための5つのベンチマークデータセットで最新の結果が得られます。
論文 参考訳(メタデータ) (2021-01-08T18:25:24Z) - Unsupervised Audiovisual Synthesis via Exemplar Autoencoders [59.13989658692953]
我々は,任意の個人の入力音声を,潜在的に無限に多くの出力スピーカのオーディオ視覚ストリームに変換する教師なしのアプローチを提案する。
我々は、Exemplar Autoencodersを用いて、特定のターゲット音声の音声、スタイリスティックな韻律、視覚的外観を学習する。
論文 参考訳(メタデータ) (2020-01-13T18:56:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。