論文の概要: SurvCaus : Representation Balancing for Survival Causal Inference
- arxiv url: http://arxiv.org/abs/2203.15672v1
- Date: Tue, 29 Mar 2022 15:33:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-30 13:33:18.936337
- Title: SurvCaus : Representation Balancing for Survival Causal Inference
- Title(参考訳): SurvCaus : 生存因推論のための表現バランス
- Authors: Ayoub Abraich, Agathe Guilloux, Blaise Hanczar
- Abstract要約: 多くの病理学では、関心の結果は(おそらく検閲された)生存時間である。
本稿では,生存環境における現実的推論に適用可能な表現バランスフレームワークの理論的保証を提案する。
- 参考スコア(独自算出の注目度): 3.4161707164978137
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Individual Treatment Effects (ITE) estimation methods have risen in
popularity in the last years. Most of the time, individual effects are better
presented as Conditional Average Treatment Effects (CATE). Recently,
representation balancing techniques have gained considerable momentum in causal
inference from observational data, still limited to continuous (and binary)
outcomes. However, in numerous pathologies, the outcome of interest is a
(possibly censored) survival time. Our paper proposes theoretical guarantees
for a representation balancing framework applied to counterfactual inference in
a survival setting using a neural network capable of predicting the factual and
counterfactual survival functions (and then the CATE), in the presence of
censorship, at the individual level. We also present extensive experiments on
synthetic and semisynthetic datasets that show that the proposed extensions
outperform baseline methods.
- Abstract(参考訳): 個人的治療効果(ite)の評価手法はここ数年で人気が高まっている。
多くの場合、個々の効果は条件付き平均治療効果(CATE)として表される。
近年,観察データからの因果推論において,連続的(および二元的)結果に限定した表現バランス手法が大きな勢いを増している。
しかし、多くの病理学において、関心の結果は(おそらく検閲された)生存時間である。
本稿では, ニューラルネットワークを用いて, 個々のレベルにおいて, 検閲の存在下において, 実際の生存機能(および, cate)を予測可能なサバイバル設定における, 相反的推論に適用する表現バランスフレームワークに関する理論的保証を提案する。
また,提案する拡張がベースライン法を上回ることを示す合成および半合成データセットに関する広範な実験を行った。
関連論文リスト
- Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights [23.602196005738676]
多くのアプリケーションにおいて、因果効果の長期推定は重要な問題であるが難しい問題である。
既存の手法は、長期的な平均効果を推定するために理想的な仮定に依存している。
論文 参考訳(メタデータ) (2024-06-27T14:13:46Z) - Adversarially Balanced Representation for Continuous Treatment Effect
Estimation [6.469020202994118]
本稿では,この処理が連続変数である,より実践的で困難なシナリオについて考察する。
本稿では,KL分散の表現の不均衡を対角的に最小化する対向反事実回帰ネットワーク(ACFR)を提案する。
半合成データセットに対する実験的な評価は、ACFRの最先端手法に対する経験的優位性を実証するものである。
論文 参考訳(メタデータ) (2023-12-17T00:46:16Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
本稿では,実世界の介入データに対する因果推論手法を評価するベンチマークスイートCausalBenchを紹介する。
CaulBenchには、新しい分散ベースの介入メトリクスを含む、生物学的に動機付けられたパフォーマンスメトリクスが含まれている。
論文 参考訳(メタデータ) (2022-10-31T13:04:07Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
バイアス付きデータセットのトレーニングにおけるバイアスの緩和は、重要なオープンな問題である。
複数のタスクにまたがる様々なデバイアス化手法の性能について検討する。
データ条件が相対モデルの性能に強い影響を与えることがわかった。
論文 参考訳(メタデータ) (2022-10-17T05:40:13Z) - Combining Experimental and Observational Data for Identification of
Long-Term Causal Effects [13.32091725929965]
本研究では、観察領域と実験領域のデータを用いて、治療変数の長期的な結果変数に対する因果効果を推定するタスクについて検討する。
観測データは共起していると考えられており、さらなる仮定なしでは、このデータセットは因果推論にも使用できない。
論文 参考訳(メタデータ) (2022-01-26T04:21:14Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - CDSM -- Casual Inference using Deep Bayesian Dynamic Survival Models [3.9169188005935927]
我々はベイジアン・リカレント・サブネットワークを用いた潜在的結果フレームワークを用いて生存曲線の差を推定する因果的動的生存モデル(CDSM)を開発した。
シミュレーションされたサバイバルデータセットを使用して、CDSMはサンプル寸法、イベントレート、結束および重複のシナリオにわたる良好な因果効果推定性能を示した。
論文 参考訳(メタデータ) (2021-01-26T09:15:49Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。