論文の概要: Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights
- arxiv url: http://arxiv.org/abs/2406.19195v1
- Date: Thu, 27 Jun 2024 14:13:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 13:58:17.813017
- Title: Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights
- Title(参考訳): 長期不均一線量応答曲線の推定:最適輸送重量を用いた一般化境界
- Authors: Zeqin Yang, Weilin Chen, Ruichu Cai, Yuguang Yan, Zhifeng Hao, Zhipeng Yu, Zhichao Zou, Zhen Peng, Jiecheng Guo,
- Abstract要約: 多くのアプリケーションにおいて、因果効果の長期推定は重要な問題であるが難しい問題である。
既存の手法は、長期的な平均効果を推定するために理想的な仮定に依存している。
- 参考スコア(独自算出の注目度): 23.602196005738676
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-term causal effect estimation is a significant but challenging problem in many applications. Existing methods rely on ideal assumptions to estimate long-term average effects, e.g., no unobserved confounders or a binary treatment,while in numerous real-world applications, these assumptions could be violated and average effects are unable to provide individual-level suggestions.In this paper,we address a more general problem of estimating the long-term heterogeneous dose-response curve (HDRC) while accounting for unobserved confounders. Specifically, to remove unobserved confounding in observational data, we introduce an optimal transport weighting framework to align the observational data to the experimental data with theoretical guarantees. Furthermore,to accurately predict the heterogeneous effects of continuous treatment, we establish a generalization bound on counterfactual prediction error by leveraging the reweighted distribution induced by optimal transport. Finally, we develop an HDRC estimator building upon the above theoretical foundations. Extensive experimental studies conducted on multiple synthetic and semi-synthetic datasets demonstrate the effectiveness of our proposed method.
- Abstract(参考訳): 多くのアプリケーションにおいて、因果効果の長期推定は重要な問題であるが難しい問題である。
既存の手法は, 長期平均効果を推定する理想的な仮定(例えば, 保存されていない共同設立者やバイナリ処理など)に依存するが, 多数の実世界の応用では, これらの仮定に違反する可能性があり, 平均効果は個々のレベルの提案を与えることができない。
具体的には,観測データに未観測の混在を取り除くために,観測データと実験データとを理論的保証で整合させるための最適な輸送重み付けフレームワークを導入する。
さらに, 連続処理による不均一な効果を正確に予測するために, 最適輸送により誘導される再重み付き分布を利用して, 対実予測誤差に縛られる一般化を確立する。
最後に,上述の理論的基礎に基づくHDRC推定器の開発を行う。
複数の合成および半合成データセットに対して行われた大規模な実験により,提案手法の有効性が示された。
関連論文リスト
- Contrastive Balancing Representation Learning for Heterogeneous Dose-Response Curves Estimation [34.20279432270329]
治療量の変化に対する個人の潜在的反応を推定することは、精密医療や管理科学などの分野における意思決定に不可欠である。
異種線量応答曲線を推定するために,CRNetと呼ばれる部分距離測度を用いたコントラストバランス表現学習ネットワークを提案する。
論文 参考訳(メタデータ) (2024-03-21T08:41:53Z) - A Double Machine Learning Approach to Combining Experimental and Observational Data [59.29868677652324]
実験と観測を組み合わせた二重機械学習手法を提案する。
我々の枠組みは、より軽度の仮定の下で、外部の妥当性と無知の違反を検査する。
論文 参考訳(メタデータ) (2023-07-04T02:53:11Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - Falsification before Extrapolation in Causal Effect Estimation [6.715453431174765]
個体群における因果関係は、しばしば観測データを用いて推定される。
本稿では,偏りのある観測推定を拒否するメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-27T21:47:23Z) - Covariate-Balancing-Aware Interpretable Deep Learning models for
Treatment Effect Estimation [15.465045049754336]
本稿では, 高い無知性仮定の下での平均処理推定値のバイアスの上限について提案する。
新たな付加型ニューラルネットワークアーキテクチャを活用することにより、目的関数としてこの上限を実装する。
提案手法は、因果推論のためのベンチマークデータセットを再検討し、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-07T07:42:40Z) - Predicting the impact of treatments over time with uncertainty aware
neural differential equations [2.099922236065961]
本稿では,治療の効果を時間とともに予測する新しい手法であるCounterfactual ODEを提案する。
CF-ODEが従来よりも精度の高い予測と信頼性の高い不確実性推定を提供することを示す。
論文 参考訳(メタデータ) (2022-02-24T09:50:02Z) - Combining Experimental and Observational Data for Identification of
Long-Term Causal Effects [13.32091725929965]
本研究では、観察領域と実験領域のデータを用いて、治療変数の長期的な結果変数に対する因果効果を推定するタスクについて検討する。
観測データは共起していると考えられており、さらなる仮定なしでは、このデータセットは因果推論にも使用できない。
論文 参考訳(メタデータ) (2022-01-26T04:21:14Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data [68.29870617697532]
時系列データにおける時間変化の相違に対するDeep Recurrent Inverse TreatmEnt重み付け(DeepRite)を提案する。
DeepRiteは、合成データから基底的真理を復元し、実際のデータから偏りのない処理効果を推定する。
論文 参考訳(メタデータ) (2020-10-28T15:05:08Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。