論文の概要: Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection
- arxiv url: http://arxiv.org/abs/2203.15793v1
- Date: Tue, 29 Mar 2022 17:50:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-30 15:35:51.634117
- Title: Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection
- Title(参考訳): インスタンス関係グラフ誘導ソースフリードメイン適応オブジェクト検出
- Authors: Vibashan VS, Poojan Oza and Vishal M. Patel
- Abstract要約: 教師なしドメイン適応(Unsupervised Domain Adaptation, UDA)は、ドメインシフトの問題に取り組むための効果的なアプローチである。
UDAメソッドは、ターゲットドメインの一般化を改善するために、ソースとターゲット表現を整列させようとする。
現実のシナリオでは、ラベル付きソースデータは、プライバシ規制、データ送信の制約、あるいはプロプライエタリなデータ関心事によって制限されることが多い。
本研究では、ソースデータなしで対象領域にソース学習対象検出器を適用するための新たなトレーニング戦略を提案する。
- 参考スコア(独自算出の注目度): 79.89082006155135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised Domain Adaptation (UDA) is an effective approach to tackle the
issue of domain shift. Specifically, UDA methods try to align the source and
target representations to improve the generalization on the target domain.
Further, UDA methods work under the assumption that the source data is
accessible during the adaptation process. However, in real-world scenarios, the
labelled source data is often restricted due to privacy regulations, data
transmission constraints, or proprietary data concerns. The Source-Free Domain
Adaptation (SFDA) setting aims to alleviate these concerns by adapting a
source-trained model for the target domain without requiring access to the
source data. In this paper, we explore the SFDA setting for the task of
adaptive object detection. To this end, we propose a novel training strategy
for adapting a source-trained object detector to the target domain without
source data. More precisely, we design a novel contrastive loss to enhance the
target representations by exploiting the objects relations for a given target
domain input. These object instance relations are modelled using an Instance
Relation Graph (IRG) network, which are then used to guide the contrastive
representation learning. In addition, we utilize a student-teacher based
knowledge distillation strategy to avoid overfitting to the noisy pseudo-labels
generated by the source-trained model. Extensive experiments on multiple object
detection benchmark datasets show that the proposed approach is able to
efficiently adapt source-trained object detectors to the target domain,
outperforming previous state-of-the-art domain adaptive detection methods. Code
is available at https://github.com/Vibashan/irg-sfda.
- Abstract(参考訳): Unsupervised Domain Adaptation (UDA)は、ドメインシフトの問題に取り組むための効果的なアプローチである。
具体的には、udaメソッドはソースとターゲットの表現を整合させ、ターゲットドメインの一般化を改善する。
さらに、UDA法は、適応プロセス中にソースデータがアクセス可能であるという仮定の下で機能する。
しかしながら、現実のシナリオでは、ラベル付きソースデータは、プライバシー規制、データ送信の制約、あるいはプロプライエタリなデータ懸念のために制限されることが多い。
Source-Free Domain Adaptation (SFDA)設定は、ソースデータへのアクセスを必要とせずに、ターゲットドメインに対してソーストレーニングされたモデルを適用することで、これらの懸念を軽減することを目的としている。
本稿では,適応物体検出タスクのためのsfda設定について検討する。
そこで本研究では、ソースデータなしで対象領域にソース学習対象検出器を適用するための新たなトレーニング戦略を提案する。
より正確には、与えられた対象ドメイン入力のオブジェクト関係を利用して、ターゲット表現を強化するために、新しいコントラスト損失を設計する。
これらのオブジェクトインスタンスの関係は、インスタンス関係グラフ(IRG)ネットワークを使用してモデル化され、コントラスト表現学習のガイドに使用される。
また,学習者による知識蒸留手法を用いて,音源学習モデルによって生成されるノイズの多い擬似ラベルへの過度な適合を回避する。
複数のオブジェクト検出ベンチマークデータセットに関する広範囲な実験により、提案手法は、ソース訓練されたオブジェクト検出器をターゲットドメインに効率的に適応することができ、従来の最先端ドメイン適応検出法を上回っている。
コードはhttps://github.com/vibashan/irg-sfdaで入手できる。
関連論文リスト
- Transcending Domains through Text-to-Image Diffusion: A Source-Free
Approach to Domain Adaptation [6.649910168731417]
ドメイン適応(ドメイン適応、Domain Adaptation、DA)は、アノテートデータが不十分なターゲットドメインにおけるモデルの性能を高める方法である。
本研究では,対象領域のサンプルに基づいてトレーニングしたテキスト・ツー・イメージ拡散モデルを用いて,ソースデータを生成する新しいSFDAフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-02T23:38:17Z) - SF-FSDA: Source-Free Few-Shot Domain Adaptive Object Detection with
Efficient Labeled Data Factory [94.11898696478683]
ドメイン適応オブジェクト検出は、ラベル付きソースドメインから学んだ知識を活用し、ラベルなしのターゲットドメインのパフォーマンスを改善することを目的としています。
本研究では,SF-FSDA という名称のソースフリーおよび少数ショット条件下で,より実用的で困難な領域適応型オブジェクト検出問題を提案し,検討する。
論文 参考訳(メタデータ) (2023-06-07T12:34:55Z) - Towards Source-free Domain Adaptive Semantic Segmentation via Importance-aware and Prototype-contrast Learning [26.544837987747766]
本稿では、Importance-Aware と Prototype-Contrast Learning を用いた、エンドツーエンドのソースフリードメイン適応セマンティックセマンティックセマンティクス手法を提案する。
提案したIAPCフレームワークは、訓練済みソースモデルからドメイン不変知識を効果的に抽出し、ラベルなしターゲットドメインからドメイン固有知識を学習する。
論文 参考訳(メタデータ) (2023-06-02T15:09:19Z) - Spatio-Temporal Pixel-Level Contrastive Learning-based Source-Free
Domain Adaptation for Video Semantic Segmentation [117.39092621796753]
Source Domain Adaptation(SFDA)セットアップは、ソースデータにアクセスすることなく、ターゲットドメインにソーストレーニングされたモデルを適用することを目的としている。
情報源データの欠如に対処するために,時間情報の相関を最大限に活用する新しい手法を提案する。
実験によると、PixelLは現在のUDAやFDAのアプローチと比較して、ベンチマークの非最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-03-25T05:06:23Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Source-Free Domain Adaptation for Semantic Segmentation [11.722728148523366]
Unsupervised Domain Adaptation(UDA)は、セマンティックセグメンテーションのための畳み込みニューラルネットワークベースのアプローチがピクセルレベルの注釈付きデータに大きく依存するという課題に取り組むことができる。
そこで本稿では,十分に訓練されたソースモデルとラベルなしのターゲットドメインデータセットのみを適用可能な,意味セグメンテーションのためのソースフリーなドメイン適応フレームワークsfdaを提案する。
論文 参考訳(メタデータ) (2021-03-30T14:14:29Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised Adapt Adaptation (UDA) は、関連性のある異なるラベル付きソースドメインから新しいラベルなしターゲットドメインへの知識の転送を目標としている。
既存のudaメソッドの多くはソースデータへのアクセスを必要としており、プライバシ上の懸念からデータが機密で共有できない場合は適用できない。
本稿では、ソースデータにアクセスする代わりに、トレーニング済みの分類モデルのみを用いて現実的な設定に取り組むことを目的とする。
論文 参考訳(メタデータ) (2020-12-14T07:28:50Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptUDA (UDA) は、ラベル付きソースデータセットから学んだ知識を活用して、新しいラベル付きドメインで同様のタスクを解決することを目的としている。
従来のUDAメソッドは、モデルに適応するためには、通常、ソースデータにアクセスする必要がある。
この作業は、訓練済みのソースモデルのみが利用できる実践的な環境に取り組み、ソースデータなしでそのようなモデルを効果的に活用してUDA問題を解決する方法に取り組みます。
論文 参考訳(メタデータ) (2020-02-20T03:13:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。