論文の概要: Unsupervised Text-to-Speech Synthesis by Unsupervised Automatic Speech
Recognition
- arxiv url: http://arxiv.org/abs/2203.15796v1
- Date: Tue, 29 Mar 2022 17:57:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-30 16:42:39.107080
- Title: Unsupervised Text-to-Speech Synthesis by Unsupervised Automatic Speech
Recognition
- Title(参考訳): 教師なし自動音声認識による教師なし音声合成
- Authors: Junrui Ni, Liming Wang, Heting Gao, Kaizhi Qian, Yang Zhang, Shiyu
Chang, Mark Hasegawa-Johnson
- Abstract要約: 教師なし音声合成システム(TTS)は、言語中の任意の文章に対応する音声波形を生成することを学習する。
本稿では、教師なし自動音声認識(ASR)の最近の進歩を活用して、教師なしTSシステムを提案する。
教師なしシステムでは、7つの言語で約10~20時間の音声で教師付きシステムに匹敵する性能を達成できる。
- 参考スコア(独自算出の注目度): 60.84668086976436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An unsupervised text-to-speech synthesis (TTS) system learns to generate the
speech waveform corresponding to any written sentence in a language by
observing: 1) a collection of untranscribed speech waveforms in that language;
2) a collection of texts written in that language without access to any
transcribed speech. Developing such a system can significantly improve the
availability of speech technology to languages without a large amount of
parallel speech and text data. This paper proposes an unsupervised TTS system
by leveraging recent advances in unsupervised automatic speech recognition
(ASR). Our unsupervised system can achieve comparable performance to the
supervised system in seven languages with about 10-20 hours of speech each. A
careful study on the effect of text units and vocoders has also been conducted
to better understand what factors may affect unsupervised TTS performance. The
samples generated by our models can be found at
https://cactuswiththoughts.github.io/UnsupTTS-Demo.
- Abstract(参考訳): 教師なしテキスト-音声合成(tts)システムは、言語内の任意の文に対応する音声波形を観察して生成する。
1) その言語における未翻訳の音声波形の収集
2) その言語で書かれたテキストの集まりは,転写された音声にアクセスできない。
このようなシステムの開発は、大量の並列音声やテキストデータを使わずに、言語への音声技術の利用を大幅に改善することができる。
本稿では,教師なし自動音声認識(asr)の最近の進歩を活用して,教師なしttsシステムを提案する。
教師なしシステムでは、7つの言語で約10~20時間の音声で教師付きシステムに匹敵する性能を達成できる。
また,教師なしtts性能に影響を及ぼす要因をよりよく理解するために,テキスト単位とボコーダの効果に関する慎重な研究も行われている。
私たちのモデルで生成されたサンプルは、https://cactuswith Thoughts.github.io/UnsupTTS-Demo.orgにある。
関連論文リスト
- Improving Accented Speech Recognition using Data Augmentation based on Unsupervised Text-to-Speech Synthesis [30.97784092953007]
本稿では、アクセント付き音声認識を改善するためのデータ拡張手法として、教師なし音声合成(TTS)の使用について検討する。
TTSシステムは、手書き文字起こしではなく、少量のアクセント付き音声訓練データとそれらの擬似ラベルで訓練される。
この手法により,アクセント付き音声認識のためのデータ拡張を行うために,手書きの書き起こしを伴わないアクセント付き音声データを使用することが可能である。
論文 参考訳(メタデータ) (2024-07-04T16:42:24Z) - Towards Unsupervised Speech Recognition Without Pronunciation Models [57.222729245842054]
ほとんどの言語では、音声認識システムを効果的に訓練するのに十分なペア音声とテキストデータがない。
本稿では、教師なしASRシステムを開発するために、音素レキシコンへの依存を除去することを提案する。
音声合成とテキスト・テキスト・マスクによるトークン埋込から教師なし音声認識が実現可能であることを実験的に実証した。
論文 参考訳(メタデータ) (2024-06-12T16:30:58Z) - A Vector Quantized Approach for Text to Speech Synthesis on Real-World
Spontaneous Speech [94.64927912924087]
我々は、YouTubeやポッドキャストから現実の音声を使ってTSシステムを訓練する。
最近のText-to-Speechアーキテクチャは、複数のコード生成とモノトニックアライメントのために設計されている。
近年のテキスト・トゥ・スペーチ・アーキテクチャは,いくつかの客観的・主観的尺度において,既存のTSシステムより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-08T17:34:32Z) - Virtuoso: Massive Multilingual Speech-Text Joint Semi-Supervised
Learning for Text-To-Speech [37.942466944970704]
本稿では,テキスト音声合成(TTS)モデルのための多言語共同学習フレームワークであるVirtuosoを提案する。
様々な音声およびテキストデータからTSモデルをトレーニングするために、教師なし(TTSおよびASRデータ)と教師なし(非教師なし)のデータセットを扱うように、異なるトレーニングスキームが設計されている。
実験により、Virtuosoで訓練された多言語TSモデルは、見かけの言語におけるベースラインモデルよりも、自然性や知性に優れることが示された。
論文 参考訳(メタデータ) (2022-10-27T14:09:48Z) - Textless Speech-to-Speech Translation on Real Data [49.134208897722246]
本研究では、ある言語から別の言語への翻訳が可能なテキストなし音声音声翻訳システム(S2ST)を提案する。
マルチ話者ターゲット音声をモデル化し、実世界のS2STデータを用いてシステムを訓練する際の課題に対処する。
論文 参考訳(メタデータ) (2021-12-15T18:56:35Z) - Guided-TTS:Text-to-Speech with Untranscribed Speech [22.548875263927396]
我々は、未転写音声データから音声を生成することを学習する高品質TTSモデルである Guided-TTS を提案する。
音声合成において,無条件DDPMの生成過程を音素分類を用いて導き,メル-スペクトログラムを生成する。
論文 参考訳(メタデータ) (2021-11-23T10:05:05Z) - Direct speech-to-speech translation with discrete units [64.19830539866072]
本稿では、中間テキスト生成に頼ることなく、ある言語から別の言語に音声を変換する直接音声音声翻訳(S2ST)モデルを提案する。
そこで本稿では,ラベルなし音声コーパスから学習した自己教師付き離散表現の予測を提案する。
対象のテキスト書き起こしが利用可能となると、同一の推論パスで2つのモード出力(音声とテキスト)を同時に生成できる、共同音声認識とテキストトレーニングを備えたマルチタスク学習フレームワークを設計する。
論文 参考訳(メタデータ) (2021-07-12T17:40:43Z) - Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis
Using Discrete Speech Representation [125.59372403631006]
マルチ話者テキスト音声(TTS)のための半教師付き学習手法を提案する。
マルチスピーカTTSモデルは、離散音声表現を備えたエンコーダデコーダフレームワークを用いて、未転写音声から学習することができる。
提案した半教師あり学習手法は,音声データの一部がうるさい場合にも有効であることがわかった。
論文 参考訳(メタデータ) (2020-05-16T15:47:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。