論文の概要: Weakly-supervised Temporal Path Representation Learning with Contrastive
Curriculum Learning -- Extended Version
- arxiv url: http://arxiv.org/abs/2203.16110v2
- Date: Fri, 1 Apr 2022 15:37:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-04 11:29:47.655960
- Title: Weakly-supervised Temporal Path Representation Learning with Contrastive
Curriculum Learning -- Extended Version
- Title(参考訳): 比較カリキュラム学習による弱教師付き時間経路表現学習-拡張版
- Authors: Sean Bin Yang, Chenjuan Guo, Jilin Hu, Bin Yang, Jian Tang, and
Christian S. Jensen
- Abstract要約: 時間的情報、例えば出発時刻を含む時間的パス(TP)は、そのようなアプリケーションを可能にするために基本的なものである。
i) 教師付き手法ではトレーニング時に大量のタスク固有のラベルを必要とするため、既存の手法では目標達成に失敗し、得られたTPRを他のタスクに一般化することができない。
本稿では,時間的経路の空間的情報と時間的情報の両方をTPRにエンコードするWakly Supervised Contrastive (WSC)学習モデルを提案する。
- 参考スコア(独自算出の注目度): 35.86394282979721
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In step with the digitalization of transportation, we are witnessing a
growing range of path-based smart-city applications, e.g., travel-time
estimation and travel path ranking. A temporal path~(TP) that includes temporal
information, e.g., departure time, into the path is of fundamental to enable
such applications. In this setting, it is essential to learn generic temporal
path representations~(TPRs) that consider spatial and temporal correlations
simultaneously and that can be used in different applications, i.e., downstream
tasks. Existing methods fail to achieve the goal since (i) supervised methods
require large amounts of task-specific labels when training and thus fail to
generalize the obtained TPRs to other tasks; (ii) though unsupervised methods
can learn generic representations, they disregard the temporal aspect, leading
to sub-optimal results. To contend with the limitations of existing solutions,
we propose a Weakly-Supervised Contrastive (WSC) learning model. We first
propose a temporal path encoder that encodes both the spatial and temporal
information of a temporal path into a TPR. To train the encoder, we introduce
weak labels that are easy and inexpensive to obtain, and are relevant to
different tasks, e.g., temporal labels indicating peak vs. off-peak hour from
departure times. Based on the weak labels, we construct meaningful positive and
negative temporal path samples by considering both spatial and temporal
information, which facilities training the encoder using contrastive learning
by pulling closer the positive samples' representations while pushing away the
negative samples' representations. To better guide the contrastive learning, we
propose a learning strategy based on Curriculum Learning such that the learning
performs from easy to hard training instances. Experiments studies verify the
effectiveness of the proposed method.
- Abstract(参考訳): 交通のデジタル化にともなって、旅行時間推定や旅行経路ランキングなど、経路ベースのスマートシティアプリケーションの増加を目の当たりにしている。
時間的情報(例えば出発時刻など)を含む時間的パス~(TP)は、そのようなアプリケーションを可能にするために基本的なものである。
この設定では、空間的および時間的相関を同時に考慮し、下流タスクなど様々なアプリケーションで使用できる一般的な時間的経路表現~(TPR)を学ぶことが不可欠である。
既存のメソッドはそれ以来目標達成に失敗する
i) 指導方法は,訓練中に大量のタスク固有のラベルを必要とするため,取得したTPRを他のタスクに一般化することができない。
(II) 教師なし手法は汎用表現を学習できるが, 時間的側面を無視し, 準最適結果をもたらす。
既存のソリューションの限界に対抗して、Weakly-Supervised Contrastive (WSC)学習モデルを提案する。
まず,時間的経路の空間的情報と時間的情報の両方をTPRにエンコードする時間的経路エンコーダを提案する。
エンコーダを訓練するには, 入手が容易で安価で, 出発時刻からピーク時刻とオフピーク時刻を示す時間ラベルなど, 異なるタスクに関連する弱いラベルを導入する。
弱ラベルに基づいて,空間情報と時間情報の両方を考慮して有意な正・負の時間パスサンプルを構築し,正のサンプル表現を狭めながら負のサンプル表現をプッシュすることで,コントラスト学習を用いてエンコーダを訓練する。
そこで本研究では,コントラスト学習をよりよく指導するために,カリキュラム学習に基づく学習戦略を提案する。
提案手法の有効性を検証する実験を行った。
関連論文リスト
- Learning Discriminative Spatio-temporal Representations for Semi-supervised Action Recognition [23.44320273156057]
本稿では,適応コントラスト学習(ACL)戦略とマルチスケールテンポラル学習(MTL)戦略を提案する。
ACL戦略は、ラベル付きデータのクラスプロトタイプにより、全ての未ラベルサンプルの信頼性を評価し、擬ラベル付きサンプルバンクから正負のサンプルを適応的に選択し、コントラスト学習を構築する。
MTL戦略は、長期クリップからの情報的意味を強調し、ノイズ情報を抑制しながら、それらを短期クリップに統合する。
論文 参考訳(メタデータ) (2024-04-25T08:49:08Z) - TimewarpVAE: Simultaneous Time-Warping and Representation Learning of Trajectories [15.28090738928877]
TimewarpVAEは、空間変動の時間変化と潜時要因を同時に学習する多様体学習アルゴリズムである。
本稿では,手書きおよびフォーク操作データセットにおける空間変動の適切な時間アライメントと有意義な表現をアルゴリズムがどのように学習するかを示す。
論文 参考訳(メタデータ) (2023-10-24T17:43:16Z) - On the Importance of Spatial Relations for Few-shot Action Recognition [109.2312001355221]
本稿では,空間的関係の重要性を考察し,より正確な数発アクション認識法を提案する。
新たな空間アライメントクロストランス(SA-CT)は、空間関係を再調整し、時間情報を組み込む。
実験の結果, 時間的情報を使用しなくても, SA-CTの性能は3/4ベンチマークの時間的手法に匹敵することがわかった。
論文 参考訳(メタデータ) (2023-08-14T12:58:02Z) - Multi-Task Self-Supervised Time-Series Representation Learning [3.31490164885582]
時系列表現学習は、時間的ダイナミクスとスパースラベルを持つデータから表現を抽出することができる。
自己教師型タスクの利点を組み合わせた時系列表現学習手法を提案する。
本稿では,時系列分類,予測,異常検出という3つのダウンストリームタスクの枠組みについて検討する。
論文 参考訳(メタデータ) (2023-03-02T07:44:06Z) - Contrastive Distillation Is a Sample-Efficient Self-Supervised Loss
Policy for Transfer Learning [20.76863234714442]
本研究では,高い相互情報を持つ潜伏変数を示すコントラスト蒸留と呼ばれる自己監督的損失ポリシーを提案する。
本稿では,この手法が伝達学習の一般的な手法より優れていることを示すとともに,オンライン転送の計算処理をトレードオフする有用な設計軸を提案する。
論文 参考訳(メタデータ) (2022-12-21T20:43:46Z) - ALLSH: Active Learning Guided by Local Sensitivity and Hardness [98.61023158378407]
本稿では,局所感度と硬度認識獲得機能を備えたラベル付きサンプルの検索を提案する。
本手法は,様々な分類タスクにおいてよく用いられるアクティブラーニング戦略よりも一貫した利得が得られる。
論文 参考訳(メタデータ) (2022-05-10T15:39:11Z) - Leveraging Time Irreversibility with Order-Contrastive Pre-training [3.1848820580333737]
時系列データに基づく自己教師付き事前学習のための「順序コントラスト」手法について検討する。
本研究では,順序コントラスト事前学習で学習した表現の下流誤差に対する有限サンプル保証を証明した。
この結果から,特定の分布クラスや下流タスクのために設計された事前学習手法が,自己指導型学習の性能を向上させることが示唆された。
論文 参考訳(メタデータ) (2021-11-04T02:56:52Z) - Contrastive learning of strong-mixing continuous-time stochastic
processes [53.82893653745542]
コントラスト学習(Contrastive Learning)は、ラベルのないデータから構築された分類タスクを解決するためにモデルを訓練する自己指導型の手法のファミリーである。
拡散の場合,小~中距離間隔の遷移カーネルを適切に構築したコントラスト学習タスクを用いて推定できることが示される。
論文 参考訳(メタデータ) (2021-03-03T23:06:47Z) - Geography-Aware Self-Supervised Learning [79.4009241781968]
異なる特徴により、標準ベンチマークにおけるコントラスト学習と教師あり学習の間には、非自明なギャップが持続していることが示される。
本稿では,リモートセンシングデータの空間的整合性を利用した新しいトレーニング手法を提案する。
提案手法は,画像分類,オブジェクト検出,セマンティックセグメンテーションにおけるコントラスト学習と教師あり学習のギャップを埋めるものである。
論文 参考訳(メタデータ) (2020-11-19T17:29:13Z) - Learning Invariant Representations for Reinforcement Learning without
Reconstruction [98.33235415273562]
本研究では,表現学習が画像などのリッチな観察からの強化学習を,ドメイン知識や画素再構成に頼ることなく促進する方法について検討する。
シミュレーションメトリクスは、連続MDPの状態間の振る舞いの類似性を定量化する。
修正された視覚的 MuJoCo タスクを用いてタスク関連情報を無視する手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-06-18T17:59:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。