論文の概要: Tampered VAE for Improved Satellite Image Time Series Classification
- arxiv url: http://arxiv.org/abs/2203.16149v1
- Date: Wed, 30 Mar 2022 08:48:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-31 14:26:41.249644
- Title: Tampered VAE for Improved Satellite Image Time Series Classification
- Title(参考訳): 改良された衛星画像時系列分類のための改ざんVAE
- Authors: Xin Cai, Yaxin Bi, Peter Nicholl
- Abstract要約: ピラミッド時間系列変換器(PTST)は時間次元のみで動作する。
本稿では,クラスタリング機構を潜在空間に導入する分類フレンドリなVAEフレームワークを提案する。
提案するフレームワークが,SITSによる作物分類のベースラインとして機能し,モジュール性と簡易性を期待する。
- 参考スコア(独自算出の注目度): 1.933681537640272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The unprecedented availability of spatial and temporal high-resolution
satellite image time series (SITS) for crop type mapping is believed to
necessitate deep learning architectures to accommodate challenges arising from
both dimensions. Recent state-of-the-art deep learning models have shown
promising results by stacking spatial and temporal encoders. However, we
present a Pyramid Time-Series Transformer (PTST) that operates solely on the
temporal dimension, i.e., neglecting the spatial dimension, can produce
superior results with a drastic reduction in GPU memory consumption and easy
extensibility. Furthermore, we augment it to perform semi-supervised learning
by proposing a classification-friendly VAE framework that introduces clustering
mechanisms into latent space and can promote linear separability therein.
Consequently, a few principal axes of the latent space can explain the majority
of variance in raw data. Meanwhile, the VAE framework with proposed tweaks can
maintain competitive classification performance as its purely discriminative
counterpart when only $40\%$ of labelled data is used. We hope the proposed
framework can serve as a baseline for crop classification with SITS for its
modularity and simplicity.
- Abstract(参考訳): 作物型マッピングのための空間的・時間的高解像度衛星画像時系列(SITS)は、両方の次元から生じる課題に対応するためにディープラーニングアーキテクチャを必要とすると考えられている。
最近の最先端ディープラーニングモデルは、空間エンコーダと時間エンコーダを積み重ねることで有望な結果を示している。
しかし,時間次元のみで動作するピラミッド型時系列変換器(PTST)は,空間次元を無視することで,GPUメモリ消費の大幅な削減と拡張性の向上を実現している。
さらに,クラスタリング機構を潜在空間に導入し,線形分離性を促進できる分類フレンドリなVAEフレームワークを提案することにより,半教師付き学習を実現する。
したがって、潜在空間のいくつかの主軸は、生データの分散のほとんどを説明できる。
一方、提案されているvaeフレームワークは、ラベル付きデータのわずか40\%$の場合にのみ、純粋に識別可能なものとして、競争力のある分類性能を維持することができる。
提案するフレームワークが,SITSによる作物分類のベースラインとして機能し,モジュール性と簡易性を期待する。
関連論文リスト
- Paving the way toward foundation models for irregular and unaligned Satellite Image Time Series [0.0]
衛星画像の空間的, スペクトル的, 時間的次元を考慮したALISEを提案する。
SITSで現在利用可能なSSLモデルとは異なり、ALISEはSITSを共通の学習された時間的プロジェクション空間に投影するための柔軟なクエリメカニズムを組み込んでいる。
PASTIS, 土地被覆区分 (MultiSenGE) , 新たな作物変化検出データセットの3つの下流課題を通じて, 生産された表現の質を評価する。
論文 参考訳(メタデータ) (2024-07-11T12:42:10Z) - OrCo: Towards Better Generalization via Orthogonality and Contrast for Few-Shot Class-Incremental Learning [57.43911113915546]
FSCIL(Few-Shot Class-Incremental Learning)は、問題空間を限られたデータで拡張するパラダイムを導入する。
FSCILの手法は、データが漸進的に到着するにつれて、破滅的な忘れ込みの課題に直面している。
表現空間における特徴の直交性と対照的な学習という2つの基本原理に基づいて構築されたOrCoフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-27T13:30:48Z) - Disentangling Spatial and Temporal Learning for Efficient Image-to-Video
Transfer Learning [59.26623999209235]
ビデオの空間的側面と時間的側面の学習を両立させるDiSTを提案する。
DiSTの非絡み合い学習は、大量の事前学習パラメータのバックプロパゲーションを避けるため、非常に効率的である。
5つのベンチマークの大規模な実験は、DiSTが既存の最先端メソッドよりも優れたパフォーマンスを提供することを示す。
論文 参考訳(メタデータ) (2023-09-14T17:58:33Z) - GaitASMS: Gait Recognition by Adaptive Structured Spatial Representation
and Multi-Scale Temporal Aggregation [2.0444600042188448]
歩行認識は、最も有望なビデオベースの生体認証技術の一つである。
本稿では,GaitASMSと呼ばれる新しい歩行認識フレームワークを提案する。
適応的な空間表現を効果的に抽出し、多スケールの時間情報を自然に集約することができる。
論文 参考訳(メタデータ) (2023-07-29T13:03:17Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Revisiting the Encoding of Satellite Image Time Series [2.5874041837241304]
画像時系列(SITS)時間学習は、高時間分解能と不規則な取得時間のために複雑である。
我々は、クエリベースのトランスフォーマーデコーダを採用する最近のトレンドに触発されて、直接セット予測問題としてSITS処理の新たな視点を開発する。
衛星PASTISベンチマークデータセットを用いて,SOTA(State-of-the-art)の新たな結果を得た。
論文 参考訳(メタデータ) (2023-05-03T12:44:20Z) - ViTs for SITS: Vision Transformers for Satellite Image Time Series [52.012084080257544]
ビジョン変換器(ViT)に基づく一般衛星画像時系列(SITS)処理のための完全アテンショナルモデルを提案する。
TSViTはSITSレコードを空間と時間で重複しないパッチに分割し、トークン化し、分解されたテンポロ空間エンコーダで処理する。
論文 参考訳(メタデータ) (2023-01-12T11:33:07Z) - STIP: A SpatioTemporal Information-Preserving and Perception-Augmented
Model for High-Resolution Video Prediction [78.129039340528]
本稿では、上記の2つの問題を解決するために、時空間情報保存・知覚拡張モデル(STIP)を提案する。
提案モデルは,特徴抽出と状態遷移中の映像の時間的情報を保存することを目的としている。
実験結果から,提案したSTIPは,様々な最先端手法と比較して,より良好な映像品質で映像を予測できることが示唆された。
論文 参考訳(メタデータ) (2022-06-09T09:49:04Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
本稿では, サース・トゥ・ファインス・スパース・トランス (CST) を用いた新しいトランス方式を提案する。
HSI再構成のための深層学習にHSI空間を埋め込んだCST
特に,CSTは,提案したスペクトル認識スクリーニング機構(SASM)を粗いパッチ選択に使用し,選択したパッチを,細かなピクセルクラスタリングと自己相似性キャプチャのために,カスタマイズしたスペクトル集約ハッシュ型マルチヘッド自己アテンション(SAH-MSA)に入力する。
論文 参考訳(メタデータ) (2022-03-09T16:17:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。