論文の概要: OrCo: Towards Better Generalization via Orthogonality and Contrast for Few-Shot Class-Incremental Learning
- arxiv url: http://arxiv.org/abs/2403.18550v1
- Date: Wed, 27 Mar 2024 13:30:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 16:58:17.614396
- Title: OrCo: Towards Better Generalization via Orthogonality and Contrast for Few-Shot Class-Incremental Learning
- Title(参考訳): OrCo: クラス増分学習のための直交性とコントラストによるより良い一般化を目指す
- Authors: Noor Ahmed, Anna Kukleva, Bernt Schiele,
- Abstract要約: FSCIL(Few-Shot Class-Incremental Learning)は、問題空間を限られたデータで拡張するパラダイムを導入する。
FSCILの手法は、データが漸進的に到着するにつれて、破滅的な忘れ込みの課題に直面している。
表現空間における特徴の直交性と対照的な学習という2つの基本原理に基づいて構築されたOrCoフレームワークを提案する。
- 参考スコア(独自算出の注目度): 57.43911113915546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-Shot Class-Incremental Learning (FSCIL) introduces a paradigm in which the problem space expands with limited data. FSCIL methods inherently face the challenge of catastrophic forgetting as data arrives incrementally, making models susceptible to overwriting previously acquired knowledge. Moreover, given the scarcity of labeled samples available at any given time, models may be prone to overfitting and find it challenging to strike a balance between extensive pretraining and the limited incremental data. To address these challenges, we propose the OrCo framework built on two core principles: features' orthogonality in the representation space, and contrastive learning. In particular, we improve the generalization of the embedding space by employing a combination of supervised and self-supervised contrastive losses during the pretraining phase. Additionally, we introduce OrCo loss to address challenges arising from data limitations during incremental sessions. Through feature space perturbations and orthogonality between classes, the OrCo loss maximizes margins and reserves space for the following incremental data. This, in turn, ensures the accommodation of incoming classes in the feature space without compromising previously acquired knowledge. Our experimental results showcase state-of-the-art performance across three benchmark datasets, including mini-ImageNet, CIFAR100, and CUB datasets. Code is available at https://github.com/noorahmedds/OrCo
- Abstract(参考訳): FSCIL(Few-Shot Class-Incremental Learning)は、問題空間を限られたデータで拡張するパラダイムを導入する。
FSCILの手法は、データが漸進的に到着するにつれて破滅的な忘れ込みの課題に本質的に直面する。
さらに、ラベル付きサンプルが常に不足していることを考えると、モデルは過度に適合する傾向があり、広範な事前トレーニングと限定的なインクリメンタルデータとのバランスをとることは困難である。
これらの課題に対処するために,特徴の表現空間における直交性(orgonality)と対照的な学習という,2つの基本原理に基づいて構築されたOrCoフレームワークを提案する。
特に,プレトレーニングフェーズにおいて,教師付きおよび自己監督型コントラスト損失の組み合わせを用いることで,埋め込み空間の一般化を改善する。
さらに、インクリメンタルセッション中にデータ制限に起因する問題に対処するためにOrCoの損失を導入します。
特徴空間の摂動とクラス間の直交性を通じて、OrCo損失は、次のインクリメンタルデータに対するマージンとリザーブスペースを最大化する。
これにより、以前取得した知識を損なうことなく、特徴空間における入ってくるクラスの収容が保証される。
実験結果は,ミニイメージネット,CIFAR100,CUBデータセットを含む3つのベンチマークデータセットにおける最先端性能を示す。
コードはhttps://github.com/noorahmedds/OrCoで入手できる。
関連論文リスト
- Efficient Prompt Tuning of Large Vision-Language Model for Fine-Grained
Ship Classification [62.425462136772666]
リモートセンシング(RS-FGSC)における船のきめ細かい分類は、クラス間の高い類似性とラベル付きデータの限られた可用性のために大きな課題となる。
大規模な訓練済みビジョンランゲージモデル(VLM)の最近の進歩は、少数ショット学習やゼロショット学習において印象的な能力を示している。
本研究は, 船種別分類精度を高めるために, VLMの可能性を生かしたものである。
論文 参考訳(メタデータ) (2024-03-13T05:48:58Z) - Enhanced Few-Shot Class-Incremental Learning via Ensemble Models [34.84881941101568]
クラス増分学習(class-incremental learning)は、新しいクラスを限られたトレーニングデータに継続的に適合させることを目的としている。
主な課題は、珍しい新しいトレーニングサンプルを過度に適合させ、古いクラスを忘れることである。
本稿では,データ拡張と協調して一般化を促進する新しいアンサンブルモデルフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-14T06:07:07Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with
Pre-trained Vision-Language Models [62.663113296987085]
クラス増分学習(class-incremental learning)は、モデルが限られたデータに基づいて漸進的にトレーニングされている場合、破滅的な忘れの問題を軽減することを目的としている。
冗長特徴除去器(RFE)と空間ノイズ補償器(SNC)の2つの新しいコンポーネントを紹介する。
既存の3次元データセットの不均衡を考慮し、3次元FSCILモデルのより微妙な評価を提供する新しい評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-28T14:52:07Z) - Neural Collapse Terminus: A Unified Solution for Class Incremental
Learning and Its Variants [166.916517335816]
本稿では,3つの課題における不整合ジレンマに対する統一解を提案する。
ラベル空間全体の最大等角的クラス間分離を有する固定構造である神経崩壊終端を提案する。
本手法は,データ不均衡やデータ不足にかかわらず,神経崩壊最適度を漸進的に保持する。
論文 参考訳(メタデータ) (2023-08-03T13:09:59Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Stabilizing and Improving Federated Learning with Non-IID Data and
Client Dropout [15.569507252445144]
ラベル分布スキューによるデータヘテロジェニーティは、フェデレート学習におけるモデル性能を制限する重要な障害であることが示されている。
クロスエントロピー損失を計算するための事前校正ソフトマックス関数を導入することで、シンプルで効果的なフレームワークを提案する。
非IIDデータとクライアントドロップアウトの存在下で、既存のベースラインよりも優れたモデル性能を示す。
論文 参考訳(メタデータ) (2023-03-11T05:17:59Z) - Task-Adaptive Saliency Guidance for Exemplar-free Class Incremental Learning [60.501201259732625]
EFCILにタスク適応型サリエンシを導入し、タスク適応型サリエンシ・スーパービジョン(TASS)と呼ばれる新しいフレームワークを提案する。
提案手法は,CIFAR-100, Tiny-ImageNet, ImageNet-Subset EFCILベンチマークを用いて,タスク間のサリエンシマップの保存や,最先端の成果の達成に有効であることを示す。
論文 参考訳(メタデータ) (2022-12-16T02:43:52Z) - Enabling Continual Learning with Differentiable Hebbian Plasticity [18.12749708143404]
連続学習は、獲得した知識を保護しながら、新しいタスクや知識を順次学習する問題である。
破滅的な忘れ物は、そのような学習プロセスを実行するニューラルネットワークにとって、大きな課題となる。
微分可能なヘビアン塑性からなるヘビアンコンソリデーションモデルを提案する。
論文 参考訳(メタデータ) (2020-06-30T06:42:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。